УДК 662.612.12:662.757:662.76.037

ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ СЖИГАНИЯ КОМПОЗИТНОГО ВОДОУГОЛЬНОГО ТОПЛИВА В КОТЛЕ ТИПА ДКВР-20-13

^{1,2}Цепенок А.И., ²Овчинников Ю.В., ³Луценко С.В., ¹Квривишвили А.Р., ¹Лавриненко А.А., ¹Межов Е.А. ¹ЗАО «ЗиО-КОТЭС», ²НГТУ, ³ООО «НПО Росток», г. Новосибирск

В статье представлены основные технические решения по переводу парового котла ДКВр-20-13 со слоевого сжигания кускового угля на вихревое сжигание композитного водоугольного топлива (искусственного композитного жидкого топлива – ИКЖТ). Описаны модели, выбранные для численного исследования горения ИКЖТ, результаты расчетов и основные характеристики работы котла.

В данной работе представлены решения по реконструкции котла ДКВР-20-13 с целью его перевода на сжигание ИКЖТ. ИКЖТ представляет собой тонкодисперсное водоугольное топливо, приготовленное с применением современных технологий и имеющее ряд характерных ему экологических, технологических и экономических преимуществ по сравнению с традиционными видами топлив (кусковой уголь, мазут, газ). Численные исследования процессов горения ИКЖТ выполнены в программе ANSYS Fluent 12 по специально подобранным моделям, основанным на опытных данных и теоретических исследованиях.

Объект реконструкции

Объектом реконструкции является паровой котел ДКВР-20-13С (рис. 1), разработанный и изготовленный АО «Бийский котельный завод». Котел вертикально-водотрубный, двухбарабанный, с естественной циркуляцией. Проектным топливом является кусковой каменный уголь Кузнецкого бассейна марки ДГ, способ сжигания – слоевой, на механической колосниковой решетке. Основные технические характеристики котла приведены в табл. 1.

Параметры	Обозначение	Величина
Номинальная паропроизводительность, т/ч	D _{ne}	20
Расчетное давление пара, кгс/см ²	P_{δ}	13
Расчетная температура пара (насыщенный), °С	T _{ne}	194
Температура питательной воды, °С	t _{nb}	100
Расчетное КПД котла на каменном угле, %	η	86

$1 a 0 m \mu \mu \mu 1$. $1 0 m m m 0 0 m 0 m m 0 0 m 0 m m m \mu \mu \mu \mu$	Таблица 1. Т	ехнические хар	зактеристики	парового ко	отла типа Д	КВр-20)-13
---	--------------	----------------	--------------	-------------	-------------	--------	------

Котел состоит из двух сварных барабанов, расположенных по оси котла, развитого котельного пучка, соединяющего барабаны, экранов топочной камеры и выносных паросепарационных циклонов. Котел оборудован дутьевым вентилятором и дымососом [1].

Рис. 1. Общий вид существующего котла ДКВР-20-13.

Топливо

В качестве исходного топлива для приготовления ИКЖТ принят каменный уголь марки Д Пермяковского разреза Караканского каменноугольного месторождения. Характеристики угля и ИКЖТ гарантийного и ухудшенного составов приведены в табл. 2.

№ п/п	Наименование	Ед. изм.	Гарантийный состав угля	Гарантийный состав ИКЖТ 60% уголь / 40% вода	Ухудшенный состав ИКЖТ 50% уголь / 50% вода	
1	Q ^r i	ккал/кг	5260	2960	2375	
2	Q^{daf}	ккал/кг	7300			
3	V^{daf}	%	42,7			
4	W ^r	%	16,5	50	58,3	
5	A ^r	%	7,0	4,2	3,5	
6	Cr	%	58,0	34,8	29,0	

Таблица 2. Состав и расчетные характеристики исходного топлива.

ИКЖТ приготавливается с помощью диспергатора и кавитатора без добавления пластификаторов и других присадок. Кавитационная обработка позволяет получить однородное мелкодисперсное топливо устойчивое к седиментации. Топливо имеет размер частиц 2-25мкм. В качестве растопочного принято дизельное топливо с Q^r_i=9070 ккал/кг.

Способ сжигания

Исследования факела ИКЖТ, проводившиеся в течение длительного времени на безе предприятия ООО НПП «Росток» [2], а также исследования по сжиганию ВУТ в СССР [4, 5, 6, 7] позволили выявить ряд особенностей факельного сжигания ИКЖТ по сравнению со сжиганием угольной пыли.

В том числе, температура воспламенения рассматриваемого топлива, как показывают многочисленные исследования, ниже, чем температура воспламене-

ния угля, из которого оно приготовлено. Начало воспламенения коксовых частиц затягивается из-за повышенного количества влаги в топливе [3]. Кроме того, сжигание ИКЖТ в холодных топках (без футеровки) затруднено из-за более низ-кой температуры топки и требует дополнительной инициации горения техноло-гическими способами.

Из-за описанных особенностей процесс сжигания ИКЖТ требует применения соответствующих камер сгорания и топочно-горелочных устройств, позволяющих создать условия для воспламенения и сжигания распыленного ИКЖТ.

На основании этого принят современный способ сжигания ИКЖТ – технология вихревого сжигания при температурах 700–1200°С с муфельным вихревым предтопком, обеспечивающая выгорание свыше 97% горючей массы. Эффективность же выгорания топлива на работающих угольных котельных со слоевым сжиганием зачастую не превышает 60–70%.

Основные технические решения по реконструкции

Переход на новую схему сжигания предполагает:

1. Установку одного муфельного предтопка на фронтовой стене топочной камеры.

2. Демонтаж низа топки и обустройство холодной воронки.

3. Установку калорифера и нового воздушного тракта с расходомерными устройствами и регулирующими клапанами.

4. Проведение ревизии и восстановления воздухоподогревателя и экономайзера, системы золошлакоудаления, тепловой изоляции котла.

5. Установку необходимых площадок обслуживания.

Общий вид котла после реконструкции представлен на рис. 2.

Рис. 2. Общий вид котла ДКВР-20-13 после реконструкции: *1* – муфельный предтопок; *2* – холодная воронка; *3* – воздухоподогреватель; *4* – экономайзер; *5* – золоуловитель.

Расчетные характеристики котла после реконструкции

Тепловые расчеты котла выполнены с учетом действующих норм в программном комплексе BoilerDesigner. Газовый тракт состоит из: топки с экранными поверхностями, фестона, котельного испарительного пучка, ТВП и экономайзера. Тепловые расчеты выполнены для нагрузок Д_{ном} и 0,8Д_{ном} при работе на ИКЖТ гарантийного состава (табл. 3).

Топливно-воздушный баланс топки приведен на рис. 3.

Рис. 3. Топливно-воздушный баланс топки на 0,8Д_{ном} и гарантийном ИКЖТ.

Таблица 3. Сводная таблица результатов теплового расчета котла.

Наименование	Ед. изм.	0,8Д _{ном}	Д _{ном}
Калорийность ИКЖТ	ккал/кг	29	60
Расход ИКЖТ, В _р	т/ч	3,473	4,335
Температура на вы-	°C	1147	1182
ходе из топки (за			
фестоном), Т _т "			
Температура	°C	152	167
уходящих газов, Т _{ух}			
Температура	°C	175	186
горячего воздуха, Т _{гв}			
КПД котла, η	%	88,4	87,4

Конструкция муфельного предтопка

Муфельный предтопок представляет собой цилиндрическую камеру, футерованную огнеупорным кирпичом (рис. 4). На торцевой стенке муфеля располагается форсунка для подачи ИКЖТ.

Рис. 4. Эскиз, 3D-модель муфельного предтопка и механизм завихрителя аксиального воздуха: *1* – форсунка ИКЖТ; *2* – канал аксиального воздуха; *3* – каналы тангенциального воздуха; *4* – канал третичного воздуха; *5* – фронтовая стена топки.

В кольцевом канале горелки установлен аксиальный завихритель с регулируемой круткой. Регулирование крутки обеспечивается поворотом лопаток завихрителя с помощью поворотного механизма.

По всей длине цилиндрического канала имеются сопла подвода вторичного воздуха тангенциально внутренней стенке муфеля. По периметру внутренней окружности имеется три равноудаленных сопла под углом 120° друг к другу. Тангенциальный подвод вторичного воздуха осуществляется через улиточный завихритель, при этом по длине муфеля короб улитки разбит на 5 секций. На каждую секцию возможна подача разного количества воздуха. Тангенциальный ввод вторичного воздуха позволяет обеспечить равномерное выжигание топлива по мере его продвижения к выходу из муфеля, а также охлаждение футеровки.

Воспламенение ИКЖТ осуществляется за счет излучения горячих стенок муфеля. Изначальный разогрев стенок муфеля осуществляется за счет подачи горячего воздуха и сжигания высокореакционного дизельного топлива, подаваемого через растопочную форсунку.

Численное исследование процессов горения ИКЖТ

Численное исследование проводилось в программе ANSYS Fluent 12. Расчетная модель имеет сетку с количеством ячеек $\approx 3 \times 10^6$.

При моделировании лучистого теплообмена использована P-1 модель. Для задач горения с большой оптической толщиной модель P-1 работает достаточно хорошо. Достоинством этого метода является его легкая совместимость с методами расчета аэродинамики и теплопереноса, реализованных на криволинейных сетках.

Влияние турбулентности потока на движение частицы производится путем применения стандартной к-є модели турбулентности.

Учитывая особенности горения водоугольных топлив и данные ряда исследований, в том числе экспериментальных [2, 3, 4, 5, 6, 7], была подобрана и проверена серией расчетов модель горения ИКЖТ. Данные испытаний говорят о том, что процессы испарения влаги, выхода летучих, горения летучих и кокса происходят параллельно, а энергия активации водоугольных топлив уменьшается по сравнению с исходным углем. Одновременно влага топлива является балластом и требует дополнительного теплоподвода.

Предыдущие наши расчеты топочно-горелочных устройств различных конструкций показали сходимость с результатами испытаний. Анализ экспериментальных и расчетных исследований привел к разработке следующей модели ИКЖТ:

Топливо условно делится на три компонента: сухой уголь, обводненный уголь, вода. Количество воды принимается равным количеству воды, добавленному к углю при приготовлении ИКЖТ (собственная влага угля не учитывается). Сухая масса угля разделяется на две равных половины: одна половина принимается с влажностью $W_1^r = 0\%$, другая содержит всю влагу исходного топлива, а значит $W_2^r = 2 \cdot W_{\text{исх}}^r / (100 - W_{\text{исх}}^r)$. Все три компонента подаются в горелочное устройство с одной поверхности форсунки и по одинаковым направлениям. Таким образом, реализуется возможность одновременного протекания реакций и не исключается забалластированность объема водой и водяными парами.

Температура выхода летучих, энергия активации летучих и кокса уменьшены по сравнению с исходным углем, что соответствует многочисленным исследованиям. Степень уменьшения данных параметров определена расчетным путем на основании серии вариантных расчетов горелочных устройств различных конструкций и сравнении результатов расчетов с экспериментальными данными. Полученные параметры сведены в табл. 4.

Кинетические параметры горения «сухого угля» и «обводненного угля» в составе модели ИКЖТ задавались одинаково – согласно табл. 4 для ИКЖТ.

№ п/п	Наименование	Ед. изм.	Исх. уголь	ИКЖТ	Примечание
1	Температура выхода летучих	°C	350*	200	*по данным [8]
2	Скорость выхода летучих	c ⁻¹	40	40	по данным [8]
3	Энергия активации летучих	Дж/кмоль	2,0×10 ⁸ **	$1,3 \times 10^{8}$	**по данным [8]
4	Энергия активации кокса	Дж/кмоль	1,25×10 ⁸ ***	$1,1 \times 10^{8}$	***по данным [9]

Таблица 4. Кинетические параметры горения ИКЖТ и исходного угля.

При моделировании конкретной угольной частицы («сухой» или «обводненной») в ANSYS Fluent 12 весь процесс разбивается на следующие стадии [8]:

1) Прогрев частицы до начала испарения влаги из топлива (стадия определяется температурой начала испарения);

2) Испарение влаги из топлива (стадия протекает при определенной температуре частицы, пока не испарится вся влага);

3) Выделение летучих, представленных неким обобщенным углеводородом вида CH_αO_βN_γ, который горит согласно реакции:

4) $CH_{\alpha}O_{\beta}N_{\gamma} + \lambda_{O2} = CO + \lambda_{H2O} \cdot H_2O + \lambda_{N2} \cdot N_2$, где λ_{O2} , λ_{H2O} , λ_{N2} – стехиометрические коэффициенты реакции;

5) Горение коксового остатка рассчитывается по диффузионнокинетической модели. Константа скорости реакции горения коксового остатка (k_0) определяется из экспериментально полученной и в дальнейшем обобщенной зависимости $lnk_0 = f(E_A)$.

Горение углерода происходит по схеме $C \rightarrow CO \rightarrow CO_2$.

В данной статье приведены результаты расчетов для нагрузки котла 0,8Д_{ном} при сжигания ИКЖТ гарантийного состава. Исходные данные для моделирования по тепловому балансу котла взяты из теплогидравлического расчета (табл. 3). Фестон и испарительный котельный пучок задавались в виде пористых сред с заданными по результатам теплового расчета коэффициентами теплосъема.

Результаты моделирования процесса горения ИКЖТ в виде полей температур, скоростей и концентраций представлены на рис. 5–10.

Как видно из результатов моделирования, в предтопке обеспечивается стабильное горение ИКЖТ (рис. 5, 7), имеется активная зона рециркуляции горячих дымовых газов (900–1000°С) к корню факела, что способствует быстрому прогреву капли ИКЖТ, ее газификации и воспламенению. Ввод тангенциального вторичного воздуха позволяет снизить температуру у стенок муфеля, а скоростной режим воздушных струй препятствует закреплению и

отложению на них золотопливных частиц. Средняя температура газов на выходе из муфеля составляет 1175°С. Степень выгорания топлива в муфеле $\approx 60\%$. Догорание топлива (преимущественно коксовых частиц) происходит в топочной камере котла (рис. 8). В целом, максимальные локальные температуры не превышают 1400°С. Поля температур по сечениям предтопка (рис. 5, 7) свидетельствуют о локализации факела в центре: внутри предтопка вторичный воздух хорошо защищает стены от наброса факела, в топочной камере эту функцию выполняет третичный воздух.

Рис. 7. Поля температур в поперечных сечениях муфельного предтопка, °С.

Рис. 9. Объемная доля кислорода.

Горение кокса идет преимущественно в объеме топки. Об этом же косвенно свидетельствует поле кислорода (рис. 9), в центральной части МП концентрация кислорода близка к нулю, что свидетельствует об интенсивном горении топлива. Все летучие выходят и сгорают в объеме предтопка, обеспечивая устойчивость процесса горения.

Аэродинамика факела в муфельном предтопке и топочной камере (рис. 10) характеризуется интенсивной зоной обратных токов к корню центральной горелки, что является ключевым фактором необходимым для быстрого прогрева и воспламенения капель ИКЖТ.

По результатам расчета температура газов на выходе из топки (за фестоном) составила T_r ^{"=1134°C}, температура за кипятильным пучком $T_{\kappa n}$ ^{"=393°C}, что соответствует результатам теплового расчета котла по программе BoilerDesigner, где T_r ^{"=1147°C}, $T_{\kappa n}$ ^{"=391°C}. Механический недожог на выходе из топки составил q₄≤1%.

Рис. 10. Векторные поля скоростей по оси предтопка, м/с.

Заключение

Как показали результаты расчетов и сопоставление численных исследований с различными экспериментальными данными, выбранные для исследований модели горения могут быть использованы при разработке топочно-горелочных устройств при применении ИКЖТ. Расчеты котла ДКВр-20-13 с муфельным предтопком показывают возможность организации надежного горения ИКЖТ с обеспечением высоких техникоэкономических показателей при незначительной реконструкции части элементов котла.

Литература

- 1. Паспорт парового котла №7 двухбарабанного вертикально-водотрубного типа ДКВ_Р 20-13 рег. №3493.
- 2. Цепенок А.И., Овчинников Ю.В., Стрижко Ю.В., Луценко С.В.. Исследование процессов горения искусственного композитного жидкого топлива в циклонном предтопке. Энергетик № 7, НТФ «Энергопрогресс», Москва, 2011. – с. 45-47.
- 3. Овчинников Ю.В., Цепенок А.И., Шихотинов А.В., Татарникова Е.В.. Исследование воспламеняемости твердых топлив и ИКЖТ. // Доклады АН ВШ РФ № 1(16). Новосибирск, 2011.
- 4. Делягин Г.Н.. Об условиях совместного протекания процессов испарения воды и выгорания капли водоугольной суспензии. // Сжигание высокообводненного топлива в виде водоугольных суспензий. «Наука», Москва,1967. с. 55-67.

- 5. Вулканов Е.И., Делягин Г.Н., Кирсанов В.И., Леваневский В.С.. Исследование топочного процесса в паровом котле при сжигании водоугольной суспензии, Онищенко А.Г. // Сжигание высокообводненного топлива в виде водоугольных суспензий. «Наука», Москва,1967. – с. 122-134.
- 6. Бутылькова Т.Н., Вулканов Е.И., Делягин Г.Н., Фролов В.С.. Сжигание обводненных каменных углей с малым содержанием летучих в виде водоугольных суспензий в опытной топке парового котла. // Сжигание высокообводненного топлива в виде водоугольных суспензий. «Наука», Москва, 1967. – с. 135-144.
- Делягин Г.Н., Кирсанов В.И., Онищенко А.Г., Гладкий А.И.. Сжигание водоугольных суспензий из донецких тощих углей в топке промышленного парового котла.//Новые методы сжигания топлива и вопросы теории горения. «Наука», Москва,1969. с. 40 51.
- 8. ANSYS Fluent 12.0 User's Guide, 2009.
- 9. Померанцев В.В.. Основы практической теории горения. Л., «Энергия», 1973.