УДК 62-63

СТРУКТУРА И СВОЙСТВА УГОЛЬНЫХ СОРБЕНТОВ И УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ, ПОЛУЧЕННЫХ ПРИ ОБРА-БОТКЕ ЭЛЕКТРОДУГОВОЙ ПЛАЗМОЙ

Буянтуев С.Л,. Кондратенко А.С.

ВСУГТУ, г. Улан-Удэ

Значение ископаемых углей как источника энергии и сырья для промышленности все более возрастает. Особое внимание уделяется бурым углям, добыча которых постоянно увеличивается. Бурые угли рассматриваются не только как энергетическое топливо, но также как сырье для химико-технологической переработки[1].

Основой процесса получения целевой продукции из угля, при любом его техническом оформлении является термодеструкция [2].

Большое значение имеет возможность получения на базе бурых углей сорбентов и углеродных наноматериалов (саж), состоящих из «луковичных» (глобулярных) и «нитевидных» (трубчатых) структур углерода, потребность в которых все более возрастает, что связано с использованием их в области материаловедения для разработок новых материалов и технологий, а также в связи с проблемой охраны окружающей среды [3].

В качестве нового способа обработки бурых углей, и получения угольных сорбентов и углеродных наноматериалов по сравнению с существующими технологиями, возможно использование низкотемпературной плазмы [4].

Для исследования природы углей, решения ряда прикладных задач большое значение имеют характеристики их адсорбционной способности. По величине адсорбции можно судить об удельной поверхности (S_{yg} , M^2) углей как не обработанных так и прошедших обработку в электродуговой плазме, используемой для получения угольных сорбентов [5].

При проведении экспериментов по термической деструкции в электродуговой плазме, с целью получения угольных сорбентов и углеродных наноматериалов применялся Окиноключевский бурый уголь (Республика Бурятия) со следующими характеристиками (табл. 1).

Органическая масса угля, % на сухую массу				Минеральная масса угля, % на сухую массу				
C^{c}	O ^c	H ^c	N ^c	S ^c	SiO ₂	Al_2O_3	CaO	Na ₂ O
68,3	8,45	3,4	0,7	1,52	10,43	4,16	1,33	0,42
A ^a			Wa		V ^{daf}		Q_i^r	
16,80			6,40		45,40		14,77	

Таблица 1. Технический и элементный анализ угля месторождения «Окиноключевское»

где: A^a – зольность аналитическая, %; W_a – влагоемкость аналитическая, %; $Q_i{}^r$ – низшая теплота сгорания, МДж/кг; V^{daf} – выход летучих веществ, %.

Качество угольных сорбентов в общем случае определяется характером пористой структуры, напрямую зависящей от следующих факторов: действи-

тельной плотности углей $\rho_{\rm d}$, кажущейся плотности углей $\rho_{\rm k}$, насыпной плотности углей $\rho_{\rm h}$ [6]. Результаты определений $\rho_{\rm d}$, $\rho_{\rm k}$ и $\rho_{\rm h}$ показаны в (табл. 2).

Образцы	ρ _д , (г/см ³)	ρ _к , (г/см ³)	р _н , (г/см ³)	
до обработки	1,45	1,24	0,67	
после обработки	1,66	0,78	0,42	

Таблица 2. Определение характеристик плотности окиноключевского бурого угля до и после электродуговой плазменной обработки

Полученные данные позволяют судить об изменении пористой структуры сорбентов. По этим данным определяются такие важные показатели пористой структуры как: эффективная пористость $\Pi_{эф}$, общий объем открытых пор V_o , а также одна из важнейших характеристик сорбентов – суммарная пористость V_{Σ} . Для слоя дисперсных углеродных материалов различают еще и межчастичную пористость (Π_{M^q}) или объем межчастичных пор (V_{M^q}) [7]. Данные по определению $\Pi_{э\phi}$, V_o , Π_{M^q} , V_{M^q} и V_{Σ} показаны в (табл. 3).

Таблица 3. Определение характеристик пористой структуры окиноключевского бурого угля до и после электродуговой плазменной обработки

Образцы	П _{эф} , %	V ₀ , (см ³ /г)	П _{мч} , %	V _{мч} , (см ³ /г)	V∑ (см³/г)
до обработки	14,5	0,12	46	0,7	-
после обработки	53,0	0,70	46	1,10	0,70

В данной работе рассматривается вариант получения угольных сорбентов из угля месторождения «Окиноключевское» обработанного электродуговой плазмой в модульном реакторе совмещенного типа.

Размеры фракций составляли от 0,1 до 1мм. Уголь пропускается через плазмохимический реактор с вращающейся магнитным полем дугой. В реакторе образуется сплошная плазменная среда со средней температурой 2500-3000[°]K. Время пребывания частиц угля в плазменной зоне зависит от размера фракции, и составляет от 0,1 до 1сек. При прохождении через плазменную зону все угольные частицы подвергаются кратковременной обработке плазмой, при этом происходит частичный пиролиз и газификация. Твердые частицы падают в нижнюю часть плазменного реактора - камеру активации. Образовавшийся синтез-газ, а также углеродные наноматериалы как спутные продукты полученные возгонкойдесублимацией обрабатываемого угля, удаляются из зоны реакции вытяжным устройством [4, 8].

Изучение влияния электродуговой плазмы на изменение удельной поверхности после обработки углей, производилось с помощью двух методов: методом воздухопроницаемости слоя угля до обработки при постоянстве режима расхода (метод Товарова) [9], а также методом Брунауэра, Эммета и Теллера (БЭТ) [10] для исследования углеродных сорбентов прошедших плазменную обработку. Результаты исследований показывают существенное увеличение удельной поверхности (S_{yд}) угля прошедшего электродуговую плазменную обработку. Так до обработки S_{yд} угля, измеренная методом Товарова составляла 800 см²/г \approx 0,1 м²/г; после же обработки S_{yд} измеренная с помощью сорбции азота (БЭТ) составила уже 70 м²/г. Таким образом, подводя итог нужно отметить тот факт, что термическая обработка угля электродуговой плазмой значительно увеличивает его внутреннюю удельную поверхность, что хорошо согласуется с литературными данными [5].

Также исследование поровой поверхности угля проводилось с помощью компьютерного 3D-моделирования [11].

При анализе поровой поверхности угля методом 3D-моделирования использовались образцы как исходного, так и прошедшего термическую деструкцию в плазме. Анализ проводился с помощью оптического металлографического микроскопа Альтами МЕТ 2. На (рис.1, а) видна ровная поверхность, образованная сетью трещин, а на (рис. 2, а) видна поровая поверхность угольной частицы после термической обработки, а также (на рис. 1, б и 2, б) приведены объемные 3D интерпретирования данных поверхностей, полученных моделированием с помощью программной среды анализа сканов Image J.

Рис. 1 Пример 3D-модели угля до термической обработки (увеличение X200). *a*) необработанный уголь; *б*) модель представления объемной структуры скана

Рис. 2 Пример 3D-модели угля прошедшего термическую обработку (увеличение X200). *a*) термически обработанный уголь; *б*) модель представления объемной структуры скана

Трехмерная модель образующая объемную поверхность имеет ряд дополнительных функций, что позволяет вращать поверхность, рассекать ее в разных направлениях, оттенять ее особенности цветовыми градиентами. Используя эти данные, можно реконструировать и визуализировать поверхность, имеющую рельеф (рис.3) [12].

При количественной оценке степени обработки, а также суждения о термическом преобразовании поверхности угля прошедшего деструкцию в плазме, применялся расчет определения общей пористости для нахождения среднего диаметра пор.

Рис. 3 Реконструированная 3D-поверхность угля прошедшего термическую обработку в плазме. *a*) – изолинии; *б*) – реконструкция

Анализ пористой структуры и определение среднего (приведенного) диаметра пор угольных сорбентов проводился по методу А.И. Беляева [13].

В ходе анализа проводилась серия сканирований поверхности, подсчитывались характерные размеры и количество пор, далее проводился математический расчет полученных зависимостей характеризующих поверхность для нахождения наиболее характерных для данного образца пор, их общей площади, и среднего (приведенного) диаметра. По результатам проведенных вычислений средний диаметр пор составил: $d_{\rm cp} = 0,000656$ мм = $0,656*10^{-6}$ м.

Плазмохимические технологии прочно занимают свои позиции в процессах синтеза наноразмерных частиц. Речь в первую очередь идет о синтезах углеродсодержащих наноматериалов – фуллеренах, нанотрубках. Данные материалы получают преимущественно в виде ультрадисперсной сажи [14]. В рассматриваемом процессе плазменной обработки сажа накапливается на водоохлаждаемых поверхностях и в камере очистки газа. Процесс образования сажи заключается в возгонке-десублимации угля и электродного графита, а также в процессе неполного сгорания части горючего газа, образующегося в результате термообработки.

Измерялась удельная поверхность полученной сажи, для этого брались пробы в разных участках ее образования. Анализ проводился методом адсорбции метиленового голубого [15] по формуле:

$$S_{y\partial} = (V * C * N_a * A_m) / m * M$$
или $S_{y\partial} = 6,0 * V, M^2/\Gamma,$

где: V – объем раствора метиленового голубого, израсходованный на титрование, см³; C – концентрация метиленового голубого, израсходованного на титрование, см³; N_a – постоянная Авогадро, равная 6,023 * 10^{23} , 1/моль; A_m – площадка, занимаемая одной молекулой адсорбированного метиленового голубого в плотноупакованной пленке на поверхности сажевых частиц, равная 106 * 10^{-20} , м²; m – масса навески сажи, г; M – молекулярная масса метиленового голубого, равная 319,9 г.

Результаты измерений приведены в (табл. 4).

<i>S_{y∂}</i> сажи с като- да, м ² /г	<i>S_{y∂}</i> сажи с анода, м ² /г	$S_{y\partial}$ сажи с водоох- лаждаемой крыш- ки, м ² /г	<i>S_{y∂}</i> сажи со вставки- муфеля, м ² /г	<i>S_{y∂}</i> сажи со скруббера га- зоочистки, м ² /г
10,8	17,4	6,0	9,0	21,0

Таблица 4. Результаты измерения S_{уд} сажи

Рис. 4. Микрофотографии нитевидных и сферических частиц углерода (Х 20 000- 70000)

Изучение полученной сажи также проводилось физико-химическими методами экстрагирования в неполярных растворителях (бензол, толуол), с целью выделения углеродных наноматериалов. Далее проводилось исследование выделенных частиц с помощью электронного микроскопа. При увеличении микроскопа в 20 000 – 100 000 раз наблюдались частицы, состоящие из «луковичных» (глобулярных) и «нитевидных» (трубчатых) структур углерода (рис. 4).

По разработанной методике из компактного сажистого образования в неполярном растворителе (толуол, бензол) были извлечены углеродные наноматериалы в аппарате Сокслета.

Основную долю публикаций по изучению строения производных фуллеренов методами колебательной спектроскопии составляют данные по ИКспектрам. Достоинством ИК-спектрального метода является возможность качественной идентификации фуллеренов с целью их обнаружения в исследуемом объекте. Это относится и к сложным смесям соединений, содержащих молекулы фуллеренов, т. е. для обнаружения фуллеренов при помощи данного метода не требуется предварительной очистки образца. Были получены ИК – спектры образцов выделенных после экстракции, ИК-спектрометрия проводилась на приборе Nicolet-380 FT-IR и идентифицированы частоты колебаний, относящихся к C_{60} и C_{70} : 1419, 1169, 807, 600 и 533 см⁻¹ что согласуется с данными, приведенными в [16].

Одной из разновидностей спектроскопии поглощения в видимом диапазоне излучения является колориметрия [17]. Проводился колориметрический анализ сажевого экстракта на присутствие в нем фуллеренов C_{60} и C_{70} растворенных в толуоле. Основанием для проведения исследований послужил тот факт, что растворы фуллеренов C_{60} и C_{70} окрашены. Кроме того, колориметрический анализ является более простым в аппаратурном оформлении, доступным и распространенным методом исследования веществ в растворах.

Из литературных данных известно, что градуировочные зависимости оптической плотности растворов фуллеренов от их концентрации имеют удовлетворительные линейные корреляции (R= 0,97) во всех исследованных растворителях. В растворах толуола и CCl₄ получены аналитические зависимости для расчета концентраций фуллеренов C₆₀ и C₇₀ в двухкомпонентных смесях C₆₀+C₇₀ неизвестного состава (рис. 5). Анализы подобного рода необходимо проводить при получении экстрактов смесей фуллеренов из фуллеренсодержащей сажи, произведенной в результате термического испарения графита и угля.

Рис. 5 Электронные спектры поглощения смесей C₆₀+C₇₀ в УФ/видимой области, полученные на фотоэлектроколориметре КФК-2.

Таким образом, использование электродуговой плазмы позволяет значительно интенсифицировать процесс термообработки угля, заключающийся в значительном увеличении пористости, увеличении удельной поверхности, и появлении сажевых образований, содержащих нитевидные и сферические углеродные наноматериалы.

Литература

- 1. Тайц Е.М., Андреева И.А. Методы анализа и испытания углей М., Недра, 1983. 301 с.
- 2. Тайц Е.М., Андреева И.А., Антонова Л.И. Окускованное топливо и адсорбенты на основе бурых углей М., Недра, 1985. 160 с.
- 3. Лозовик Ю.В., Попов А.М. Образование и рост углеродных наноструктур фуллеренов, наночастиц, нанотрубок и конусов//УФН, т. 167 (7), с. 151, 1997
- 4. С.Л. Буянтуев, И.В. Старинский. Патент РФ на изобретение №2314996 «Способ получения активированного угля и установка для его осуществления», опубликован 20.01.2008 Бюл.№2.МПК С01В31/08
- 5. Колышкин Д.А., Михайлова К.К. Активные угли свойства и методы испытаний. Справочник. Изд-во «Химия», Л., 1972. 56 с.
- 6. Менковский М.А., Флодин А.А. Аналитическая химия и технический анализ углей М., Недра, 1973. 368 с.
- 7. Бутырин Г.М. Высокопористые углеродные материалы М., Химия, 1976. 192 с.
- 8. Буянтуев С.Л., Кондратенко А.С. Исследование удельной поверхности углей, обработанных электродуговой плазмой, с помощью модели полимолекулярной адсорбции Брунауэра, Эммета, Теллера // Вестник Бурятского Госуниверситета., №3, 2012, С. 226-230
- 9. Товаров В. В. Измерение удельной поверхности порошкообразных материалов // Заводская лаборатория. 1948. Вып. 14. С. 68—76.
- 10. Грег С., Синг К. Адсорбция, удельная поверхность, пористость: Пер. с англ. 2-е изд. М.: Мир, 1984. 306 с., ил.
- 11. Пантелеев В.Г., Егорова О.В., Клыкова Е.И. Компьютерная микроскопия М., Техносфера, 2005. 304 с.
- Niederost M., Niederost J., Scucka J. Automatic 3D reconstruction and visualization of microscopic object from a monoscopic multifocus image sequence // International Archives of Photogrammetry, remote Sensing and Spatial Information Sciences. Vol. XXXIV – 5/W10, 2002
- 13. Беляев А.И., Жемчужина Е.А. Микроскопический анализ углеродистых материалов и электродов М., ГНТИ, 1957. 78 с.
- 14. Раков Э.Г. Нанотрубки и фуллерены// М.2006, 376 с.
- 15. ГОСТ 13144 79 ГРАФИТ Методы определения удельной поверхности
- Золотухин И.В. Фуллерит новая форма углерода // Соросовский Образовательный Журнал. 1996. № 2. С. 51-56.
- 17. Сидоров Л.Н. Газовые кластеры и фуллерены // Там же. 1998. № 3. С. 65-71.