УДК 662.642

ПОЛУЧЕНИЕ ГАЗОВОГО, ЖИДКОГО И ОБЛАГОРОЖЕННОГО ТВЕРДОГО ТОПЛИВА ИЗ БУРОГО УГЛЯ В СВЕРХКРИТИЧЕСКОЙ ВОДЕ

Востриков А.А., Федяева О.Н., Дубов Д.Ю., Шишкин А.В., Сокол М.Я.

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

Несмотря на большие запасы и широкое распространение бурых углей, их вовлечение в топливную энергетику незначительно. Это объясняется их низкой теплотворной способностью (20-25 МДж/кг), обусловленной высоким содержанием кислорода (≤30%) и влаги (≤60%) в органической массе угля (ОМУ). При пиролизе бурых углей связанный кислород удаляется в составе СО₂, но трудности практической реализации и тепловые затраты на выпаривание воды делают такое облагораживание неэффективным. Ситуация изменяется при конверсии бурых углей в сверхкритической воде (СКВ). Вода при сверхкритических параметрах (T>374°C, P>22.1 МПа) становится неполярным растворителем и источником радикалов Н· и НО·, что обеспечивает ожижение и газификацию значительной части ОМУ, кислород удаляется в составе СО₂, а твердый остаток обогащается углеродом [1-5]. Например, в [4] гидротермальная обработка бурого угля в автоклаве при 350°C, 18 МПа обеспечила увеличение высшей теплоты сгорания угля от 25.0 до 33.1 МДж/кг только из-за снижения в ОМУ содержания кислорода. Авторы [5], основываясь на результатах анализа продуктов гидротермальной обработки угля в автоклаве при 150-350°C, сделали вывод о том, что реакции пиролиза и гидролиза ОМУ приводят к разрушению эфирных связей, отрыву алифатических заместителей и перераспределению невалентных взаимодействий в ОМУ. В [5] также обнаружено, что при 250<T<300°C вследствие тушения радикальных фрагментов радикалами Н· и OH·, источником которых являются молекулы H₂O, происходит насыщение OMУ водородом, что увеличивает выход жидких углеводородов.

Нами предложены и исследованы два новых способа СКВ конверсии бурых углей. Первый способ [6] заключается в периодическом напуске СКВ в массив частиц угля и сбросе СКВ с растворенными продуктами конверсии из реактора в режиме ступенчатого повышения температуры. Второй способ [7] конверсии заключается в непрерывной подаче водоугольной суспензии (ВУС) сверху в вертикально расположенный реактор.

Конверсия угля в режиме периодического напуска СКВ и сброса давления. Объектом исследования был бурый уголь Якутского угольного бассейна со следующими характеристиками: влажность W=8.4%, зольность сухого угля $A^{d}_{0}=12.5\%$, брутто-формула ОМУ – CH_{0.80}N_{0.01}S_{0.002}O_{0.25}.

Порядок проведения опытов был следующий. Известное количество угля засыпали в цилиндрическую гильзу ($d_{in}=18$ мм). Открытый торец гильзы закрывали перегородкой (рис. 1), изготовленной из пористой нержавеющей стали. Гильзу устанавливали в вертикально расположенный реактор перегородкой вниз. Перегородка предотвращала вынос угля из реактора при сбросе реактантов. После герметизации реактора все системы установки вакуумировали.

Рис. 1. Схема экспериментального стенда: емкость с водой (1); плунжерный насос (2); манометр (3); демпферная емкость (4); расходомер (5); термопары (6); теплообменник (7); нагревательные элементы (8); датчики давления (9); реактор (10); перегородка из пористой нержавеющей стали (11); пробоотборник для жидких продуктов (12); термостаты (13); коллектор для газов (14); блок масс-спектрометрической диагностики (15); форвакуумный насос (16).

В таблице 1 приведены условия опытов 1 и 2: время напуска пара или СКВ в реактор t_{in} , время выдержки t_r , время сброса реактантов из реактора t_{ej} , температура *T*, давление *P* и плотность ρ пара или СКВ, количество циклов напуска-сброса *N*. Переход на новый температурный уровень осуществляли равномерным нагревом реактора (2°С/мин). Жидкие реактанты всех *N* сбросов, соответствующих *T* и *P*, собирали в съемные пробоотборники. Анализ летучих продуктов и вакуумирование коллектора осуществляли после каждого сброса реактантов за время следующего напуска в реактор пара или СКВ.

Опы	т 1 (t_{in} =5.0±0	0.5 мин, <i>t</i> _r =10±1 мин	,	Опыт 2 (t_{in} =3.0±0.5 мин, t_r =5.0±0.5 мин,						
	$t_{\rm ej} = 5.0$	±0.5 мин)		t _{ej} =2.0±0.2 мин)						
<i>Т</i> , °С	Р, МПа	ρ, ммоль/см ³	N	<i>Т</i> , °С	Р, МПа	ρ, ммоль/см ³	N			
310	9.4	2.783	7	330	10.6	2.976	5			
330	12.7	4.160	6	350	11.1	2.868	5			
350	15.4	5.145	5	370	11.2	2.668	5			
370	19.5	7.321	4	390	11.3	2.517	5			
390	26.5	18.13	3	390	17.7	4.810	4			
410	29.8	13.60	3	390	29.0	24.86	3			
440	30.4	9.165	4	410	11.5	2.422	5			
460	30.7	8.035	3	410	19.3	4.940	4			
_	—	_	-	410	29.5	13.09	4			
_	—	—	—	430	30.8	10.48	4			

Таблица 1. Экспериментальные условия для конверсии угля в паре воды и СКВ

На рис. 2 приведены температурные зависимости величин выхода жидких β_L , летучих горючих β_{gc} веществ, диоксида углерода β_{CO2} , а также степени превращения ОМУ α , полученных в опытах 1 и 2. Отметим, что величины β и α не являются предельными, поскольку количество циклов N напуска-сброса пара и СКВ при заданных значениях T и P выбирали из условия накопления в съемных пробоотборниках достаточного для анализа количества жидких продуктов. Наблюдаемый на рис. 2 рост выхода продуктов конверсии является следствием не только увеличения T и количества циклов напуска сброса, но и плотности СКВ.

Рис. 2. Температурные зависимости степени превращения ОМУ (α) и выхода CO₂ (β_{CO2}), летучих горючих (β_{gc}) и жидких (β_L) продуктов.

Рис. 3. Температурные зависимости степени удаления кислорода [O], азота [N] и серы [S] из ОМУ.

На рис. 3 приведены степени удаления из ОМУ кислорода, азота и серы, определенные из данных масс-спектрометрического анализа летучих веществ, элементного анализа исходного угля и жидких продуктов. Видно, что при увеличении Т и Р наиболее интенсивно из ОМУ удаляются кислород и сера. Основная масса кислорода удаляется в составе CO₂, а серы – в H₂S. Половина кислорода перешла в CO_2 уже при 330°C, а в конце опытов 1 и 2 степень удаления достигла соответственно 82.3 и 85.2%. Степень удаления серы из ОМУ в опытах 1 и 2 составила соответственно 74.7 и 77.2%. В опыте 1 основная масса серы (52.3%) выделилась в составе H₂S, 17.2% – в тиофенах и только 5.2% – в жидких продуктах. В опыте 1 максимальный выход H₂S и тиофенов реализовался в области 370- 410° С, а в опыте 2 – при 390°С, что обусловлено большим количеством циклов N напуска-сброса пара и СКВ. Степень удаления азота из ОМУ значительно меньше, чем кислорода и серы, и составила 39.3 и 32.8% в опытах 1 и 2, соответственно. Это связано с тем, что значительная часть азота в макромолекулярной матрице ОМУ находится в составе ароматических компонентов, обладающих высокой энергией связи.

Конверсию бурого угля в паре и СКВ можно выразить следующей брутто-реакцией:

$$\langle \text{Coal} \rangle \rightarrow \beta^d_{\text{CO2}}(\text{CO}_2) + \beta^d_{\text{gc}}(\text{Gas Fuel}) + \beta^d_{\text{L}}(\text{Liquid Fuel}) + \beta^d_{\text{R}}(\text{Solid Fuel}), \quad (1)$$

Здесь величины $\beta^d = \beta \times (1 - A^d_0)$ – выход продуктов и остатка конверсии в расчете на сухой уголь, т.е. с учетом весовой доли золы A^d_0 в исходном угле. Величины β^d приведены в табл. 2 вместе с рассчитанными по формуле (2) величинами высшей теплоты сгорания твердого остатка HHV_R, летучих горючих HHV_{gc} и жидких HHV_L продуктов конверсии угля в паре (370°C) и CKB (430 и 460°C) [8]:

$$HHV = 2.326 \times [146.58 \cdot C + 568.78 \cdot H + 29.4 \cdot S - 6.58 \cdot A^{d} - 51.53 \cdot (O+N)], \qquad (2)$$

где C, H, S, N, и O – содержание элементов в сухих компонентах реакции (1). Для исходного угля по формуле (2) получено HHV₀ = 23.6 МДж/кг.

Суммарный вес угольных топлив и CO₂, полученных в процессе (1), совпал с весом исходного угля с точностью до потери их массы при отделении от воды, а суммарная теплота сгорания $\Sigma\beta^d_i$ HHV_i = β^d_{gc} HHV_{gc} + β^d_L HHV_L + β^d_R HHV_R в пределах погрешности совпадала с величиной HHV₀. Высокие величины HHV_{gc} и HHV_L по сравнению с HHV₀ являются следствием перераспределения водорода из остатка конверсии в горючие летучие и жидкие продукты. По мере удаления кислорода из остатка конверсии HHV_R увеличивается так, что уже при 370°C становится на 18% больше HHV₀.

0	Τ.	β^d_{R}	HHV_{R} ,	β^d_{ac}	HHV _{ec} ,	β^{d}_{1} .	HHV _L ,	$\Sigma \beta^{d}_{i} HHV_{i}$
Опыт	°Ć	мас. %	МДж/кг	мас. %	МДж/кг	мас. %	МДж/кг	МДж/кг
1	370	75.7	27.9	2.0	36.5	4.5	37.4	23.5±0.6
1	460	65.0	28.0	5.4	40.6	7.6	37.4	23.2±0.6
2	370	78.5	27.7	1.4	39.1	3.5	35.4	23.5±0.6
2	430	62.6	28.4	5.5	41.8	9.3	36.6	23.5±0.6

Таблица 2. Выход и высшая теплота сгорания продуктов конверсии

Из полученных результатов следует, что в СКВ при 374–440°С реализовался максимальный выход жидких продуктов. Это обусловлено тем, что при T < 374°С давление процесса ограничено давлением насыщенного пара воды, а при T > 440°С увеличивается вклад реакций вторичного крекинга продуктов конверсии, приводящих к более интенсивному выходу летучих горючих продуктов.

Конверсия угля в режиме непрерывной подачи ВУС в реактор. Объектом исследования был бурый уголь Канско-Ачинского угольного бассейна со следующими характеристиками: W=19.7%, $A^d_0=10.1\%$, брутто-формула ОМУ – $CH_{0.83}N_{0.01}O_{0.21}$. Содержание серы в пробе угля менее 0.1%. В состав ВУС входили (мас. %): вода (48–51), NaOH (0.8), уголь (51–48) с фракционным составом частиц (мас. %): 40–50 µм (20–25); 200–315 µм (75–80). Указанное бимодальное распределение частиц по размерам обеспечивало устойчивость и текучесть ВУС.

Схема экспериментального стенда показана на рис. 4. Порядок проведения экспериментов был следующим. Дистиллированную воду, залитую в цилиндрический реактор (L=900 мм, $d_{in}=24$ мм) нагревали с помощью внешних омических нагревателей. После выхода на заданный температурный режим в реактор из бункера по коническому каналу начинали подавать ВУС. Подачу ВУС осуществляли непрерывно под давлением воды, нагнетаемой плунжерным насосом через демпфирующую емкость в бункер с ВУС. Температура стенок канала увеличивалась от комнатной до температуры верхней части реактора, а в центральной части канала поддерживалась $380\pm5^{\circ}$ С. Расход ВУС составлял 11.9 г/мин, время подачи ВУС – от 12 до 47 мин. Рабочее давление (30 МПа) в реакторе поддерживали непрерывным стоком флюида по каналу *R* в верхней части реактора или по каналу *ET* в коллектор для сбора продуктов. Для предотвращения попадания частиц угля в каналы стока продуктов перед ними были установлены фильтры, изготовленные из пористой нержавеющей стали.

Рис. 4. Схема экспериментального стенда: емкость с водой (1); плунжерный насос (2); датчики давления (3); демпферная емкость (4); расходомер (5); термопары (6); теплообменник (7); нагревательный элемент (8); бункер для ВУС (9); расширительная трубка (10); реактор (11); емкости для жидких продуктов (12); коллектор для газообразных продуктов (13); блок масс-спектрометрической диагностики (14); ET и R – отверстия для сброса продуктов.

В таблице 3 приведены условия и результаты экспериментов, где указаны температуры верхней T^{t} и нижней T^{b} третей реактора, время подачи ВУС в реактор t_{BYC} , влажность W, зольность A^d и брутто-формула остатка угля. Видно, что с повышением T^t степень превращения ОМУ увеличивалась, а содержание водорода и кислорода в остатке угля уменьшалось. Это обусловлено деструкцией кислородсодержащих фрагментов и снижением доли алифатических атомов углерода в макромолекулярном каркасе ОМУ из-за их отрыва и образования жидких и газовых продуктов. Высокая степень превращения α объясняется тем, что в изобарических условиях увеличение температуры частиц угля при их падении в реактор создавало избыточное давление реактантов в порах частиц по отношению к окружающей среде. Это инициировало сток воды и продуктов конверсии ОМУ. Из-за сильной температурной зависимости коэффициента изобарического теплового расширения повышение давления флюида в порах могло не только увеличивать степень превращения ОМУ, но и разрушать частицы. Мы назвали неизотермическую конверсию ОМУ для частиц, падающих в реактор, динамической конверсией (ДК).

Опыт	T ^t , ⁰C	<i>Т</i> ^ь , °С	$t_{\rm BYC}$, МИН	Сток продуктов	W, %	<i>A</i> ^d , %	Брутто-формула	α, %
1	400	310	44	R	1.7	18.8	CH _{0.65} O _{0.06} N _{0.012}	48.0
2	750	300	40	ET	5.5	19.6	CH _{0.53} O _{0.02} N _{0.005}	53.9
3	665	740	12	R	1.2	23.2	CH _{0.23} O _{0.01} N _{0.005}	62.8

Таблица 3. Условия и результаты экспериментов

В режиме низкотемпературной ДК бурого угля состав продуктов конверсии определялся высокой скоростью нагрева частиц и возникающим в их порах избыточным давлением, которые приводили к быстрому выделению нативных и вторичных продуктов. Малое значение молекулярной массы продуктов конверсии (табл. 4) обусловлены составом бурых углей, для которых характерно высокое содержание кислорода и низкая степень ароматичности атомов углерода. Быстрый сброс основной массы кислорода из ОМУ (47.6% в составе CO₂ (табл. 5) и 23.8% – в жидких продуктах) обусловлен высоким содержанием термически нестабильных кислородсодержащих групп и реакциями гидролиза.

Продукты	Вы-	Элементный состав, %				%	Молекулярная	Молекулярная
	ход, %	С	Н	Ν	S	0	масса, а.е.м.	формула
Из водной								
эмульсии	11.0	70.72	8.39	0.79	0.12	19.98	210	$C_{12.4}H_{17.6}N_{0.12}S_{0.01}O_{2.6}$
Твердые								
смолистые	22.9	78.25	8.76	0.75	0.13	12.11	265	$C_{17,3}H_{23,2}N_{0,14}S_{0,01}O_{2,0}$

Таблица 4. Выход и состав жидких продуктов ДК конверсии при $T^{t} = 400^{\circ}$ С

Таблица 5. Выход и состав летучих продуктов конверсии

Опыт	CO_2	СО	H_2	CH_4	C_2H_6	C_6H_6	$\mathrm{C_7H_8}$	$C_8 \mathrm{H}_{10}$	Брутто-формула	Выход, %
1	96.00	0.45	1.41	1.86	0.22	0.03	0.03	0	CH _{0.12} O _{1.94}	14.1
2	83.51	3.11	0.28	5.30	2.89	0.24	0.24	0.10	CH _{0.68} O _{1.48}	23.3
3	40.52	7.20	10.80	37.93	2.59	0.90	0.06	0	CH _{2.01} O _{0.91}	44.6

При повышении T^{t} до 750°С (опыт 2) степень превращения ОМУ увеличилась до 53.9%. Столь небольшое увеличение α по сравнению с опытом 1 объясняется малым временем пребывания частиц в высокотемпературной области реактора. Основная масса продуктов истекает из частиц при $T \leq 410^{\circ}$ С в момент скачка давления флюида в частицах. Поскольку отбор продуктов осуществлялся через отверстие *ET*, то продукты низкотемпературной ДК практически не попадали в высокотемпературную область реактора. Вследствие этого, в опыте 2 увеличение α определялось, в основном, летучими продуктами газификации, образовавшимися при движении частиц угля через высокотемпературную область реактора. В результате получено что, доля кислорода в остатке угля уменьшилась до 8.2%. При этом 74.0% кислорода исходной ОМУ оказалось в CO₂ и CO (табл. 5) и 17.8 % в жидких продуктах конверсии.

В опыте 3 температуру увеличили до T^4 =665°С и T^6 =740°С, т.е. частицы угля падали на дно реактора в условиях непрерывного увеличения температуры. При этом все продукты конверсии, образовавшиеся в канале подачи ВУС, проходили через верхнюю высокотемпературную область реактора, и время конверсии угля увеличилось. В результате, степень превращения ОМУ и выход летучих продуктов также увеличились (табл. 3 и 5). Исходя из элементного состава исходного угля и остатка угля (табл. 3) брутто-формула продуктов конверсии должна быть CH_{1.39}O_{0.40}. В действительности, брутто-формула летучих продуктов (табл. 5) оказалась следующей CH_{2.01}O_{0.91}. Видно, что доля водорода и кислорода в полученных продуктах выше, чем ожидалось. При этом количество кислорода, содержащегося только в CO₂ и CO, оказалось на 10.6% больше, чем количество кислорода в исходном OMУ. Очевидно, что это является следствием разложением молекул воды.

Процесс ДК обеспечивает возможность генерации электрической энергии. Однако при этом возникает вопрос о величине теплового эффекта Q конверсии угля в СКВ. Оценим Q, используя данные о составе продуктов конверсии (табл. 3-5), данные о теплоте сгорания веществ [8] и следующую брутто-реакцию конверсии:

$$C_{10}H_{8,3}O_{2,1} + iH_2O = jCO_2 + kCO + lH_2 + \sum f_nC_nH_m + C_aH_bO_c + Q, \qquad (3)$$

где в левой части уравнения исходная ОМУ и в правой части – остаток конверсии, не перешедший в газовые и жидкие продукты. Здесь $a = 10 - (j + k + \sum f_n n)$, $b = 8.3+2i-(l+\sum f_n m)$, c = 2.1+i-(2j+k), $\sum f_n C_n H_m$ – летучие углеводороды и f_n – стехиометрические коэффициенты. Рассчитанные значения Q для опытов 1-3 приведены в табл. 6. Видно, что СКВ конверсия протекает с поглощением тепла. Тепловые затраты на конверсию в опыте 3 больше, чем в опыте 2 из-за разложения молекул H₂O в результате увеличения времени пребывания OMУ при высокой температуре. Зависимость теплового эффекта СКВ конверсии угля как функции от степени превращения при *T*=750°C, *P*=30 МПа получена нами ранее [9]. Тепловые затраты на конверсию увеличиваются с повышением степени превращения OMУ и достигают предельного значения при Q≈0.09Q_c, где Q_c – теплота сгорания угля [9].

Опыт	$i(H_2O)$	j(CO ₂)	<i>k</i> (CO)	$l(H_2)$	$f_l(CH_4)$	$f_2(C_2H_6)$	$f_6(C_6H_6)$	$f_7(C_7H_8)$	$C_aH_bO_c$	Q, кДж/кг
1	0	5.1·10 ⁻¹	$2.4 \cdot 10^{-3}$	7.5.10-3	9.9·10 ⁻³	$1.2 \cdot 10^{-3}$	$1.3 \cdot 10^{-4}$	$1.4 \cdot 10^{-3}$	$C_{9.47}H_{8.23}O_{1.07}$	23.2
2	0	7.5.10 ⁻¹	$2.8 \cdot 10^{-2}$	$2.5 \cdot 10^{-3}$	$4.8 \cdot 10^{-2}$	$2.6 \cdot 10^{-2}$	$2.1 \cdot 10^{-3}$	$2.1 \cdot 10^{-3}$	$C_{8.96}H_{7.59}O_{0.56}$	76.2
3	0.25	$1.1 \cdot 10^{+1}$	1.9·10 ⁻¹	$2.8 \cdot 10^{-1}$	9.9·10 ⁻¹	$6.7 \cdot 10^{-2}$	$2.3 \cdot 10^{-2}$	$1.0 \cdot 10^{-3}$	$C_{7.47}H_{3.72}O_{0.05}$	209.5

Таблица 6. Стехиометрические коэффициенты и тепловой эффект реакции (3)

Важным является то, что предложенные нами способы исключают агломерацию частиц угля и обеспечивают высокую степень конверсии в жидкие и летучие продукты. Метод конверсии в режиме напуска-сброса пара или СКВ, в отличие от конверсии бурого угля в составе водоугольной суспензии, не нуждается в приготовлении частиц угля с заданной функцией распределения по размерам. Благодаря удалению при конверсии основной массы нативного кислорода из ОМУ в составе CO₂, высшая теплота сгорания полученных из угля топлив существенно превышает (HHV)₀. Удельные тепловые затраты на удаление CO₂ из ОМУ при СКВ конверсии (400°С, 30 МРа) не превышают процента от (HHV)₀. Дополнительным эффектом облагораживания и улучшения топливных характеристик твердого остатка конверсии является высокая степень удаления серы в составе H₂S.

В перспективе традиционные способы сжигания топлив с целью получения рабочего тела электрогенерирующих устройств, по-видимому, будут заменены на сжигание непосредственно в СКВ [10-12]. Привлекательность такого способа обусловлена, во-первых, более высокой скоростью гомогенного [13,14] и гетерогенного [1,15] горения топлив за счет участия молекул H₂O в окислительно-восстановительных реакциях. Во-вторых, исключаются проблемы кризисов теплопередачи, образования токсичных оксидов и аэрозолей, т.е. исключаются все негативные факторы, связанные с высокими градиентами температуры между источником тепла и теплоносителем (водой) в традиционных системах. Более того, в котлах-реакторах на СКВ продукты горения (H₂O и CO₂) становятся частью рабочего тела. Это, очевидно, увеличит кпд генерации электрической энергии. Важно, что предложенные методы конверсии могут быть использованы для получения жидких и летучих углеводородов на стадии подготовки бурых углей к сжиганию.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (Проекты №11-03-00388 и 12-08-00033).

Литература

- 1. Wang S., Guo Y., Wang Y., et al. Fuel Processing Technology 92 (2011) 291-297.
- 2. Wu B., Hu H., Huang S., et al. Energy & Fuels. 22 (2008) 3944-3948.
- 3. Cheng L., Zhang R., Bi J. Fuel Processing Technology 85 (2004) 921-932.
- 4. Sakaguchi M., Laursen K., Nakagawa H., et al. Fuel Processing Technology 89 (2008) 391-396.
- 5. Morimoto M., Nakagawa H., Miura K. Energy & Fuels 23 (2009) 4533-4539.
- 6. Fedyaeva O.N., Vostrikov A.A., Shishkin A.V., et al. J. Supercritical Fluids 62 (2012) 155-164.
- 7. Vostrikov A.A., Fedyaeva O.N., Dubov D.Y., et al. Energy 36 (2011) 1948-1955.
- 8. P.H. Perry, D.W. Green, J.O. Maloney (Eds.), Perry's Chemical Engineers' Handbook, 7th ed., McGraw-Hill, New York, 1997.
- 9. Vostrikov A.A., Psarov S.A., Dubov D.Y., et al. Energy & Fuels 21 (2007) 2840-2845.
- 10. Bermejo M.D., Cocero M.J., Fernandes-Polanco F. Fuel 83 (2004) 195-204.
- 11. Heberle J.R., Edwards C.F. Int. J. Greenhouse Gas Control 3 (2009) 568-76.
- 12. Donatini F., Gigliucci G., Riccardi J., et al. Energy 34 (2009) 2144-50.
- 13. Vostrikov A.A., Dubov D.Y., Psarov S.A. Technical Physics Letters 27 (2001) 847-849.
- 14. Vostrikov A.A., Psarov S.A. Technical Physics Letters 28 (2002) 776-778.
- Vostrikov A.A., Dubov D.Y., Psarov S.A., Sokol M.Y. Industrial & Engineering Chemistry Research 46 (2007) 4710-4716.