НОВЫЕ ЭНЕРГОИСТОЧНИКИ ДЛЯ АРКТИКИ И «ДАЛЬНЕВОСТОЧНОГО ГЕКТАРА»

Чомчоев А.И.

«Испытательный полигон холода», Якутия

Население арктической зоны Республики Caxa (Якутия) ежегодно уменьшается. Жители в поисках работы и заработков вынуждены переезжать в крупные населенные пункты и города. Одновременно в Арктике появляются вахтовики по добыче полезных ископаемых и военнослужащие для обеспечения безопасности российской арктической границы. В последние годы Высшее руководство Российской Федерации проводит активную политику государственного протекционизма освоения Дальнего Востока, в рамках которой принято решение о бесплатном предоставлении одного гектара свободной земли гражданам страны. Для освоения арктической зоны и «дальневосточного гектара», прежде всего, необходимо решить вопрос дешевого электро-теплоснабжения жилых помещений, гаражей для техники и помещений для животных в условиях холодного климата.

Продолжится ли потепление Арктики или придет похолодание

В начале января месяца этого года в с. Колымское [1] и с. Андрюшкино [2] арктического Нижнеколымского района Якутии заканчивалось топливо для дизельных электростанций. Энергетики в январские морозы в целях экономии топлива начали веерные отключения. К концу месяца такое положение было в 6 селах Усть-Янского района [3]. Автозимники, которые раньше открывались в ноябре-декабре месяце, в этом году не были готовы из-за тонкого льда на реках и позднего замерзания болот. Снег в этом году в арктических районах глубокий и ветры сильные и частые, не как обычно. Поэтому метели спрессовали снег, преграждая проезд даже легкой бульдозерной техники. Такое положение было в Якутии в 2013 году, когда уголь и продукты питания возили самолетами, дизельное топливо – вертолетами [4].

Такая сложная зима и усиление ветра для Якутии давно прогнозировались, а в будущем с завозом грузов в арктические районы будет еще сложнее. "В Арктике теплеет. Если в среднем полушарии температура последние 30 лет увеличивалась на полградуса, то в Арктике - на 1,5°, - говорит доктор физико-математических наук, ведущий научный сотрудник лаборатории теории климата Института физики атмосферы им. А.М. Обухова РАН и заведующий лабораторией климатологии Института географии РАН Владимир Семенов в интервью ТАСС, опубликованном 31 января 2017 года [5]. Будущее климата в Арктике, как добавляет эксперт, до сих пор остается загадкой для мировых ученых, которые не могут сказать, продолжится ли современное потепление в Арктике, или это очередной цикл, за которым снова придет похолодание. Далее климатолог отмечает, что если потепление будет продолжаться, существует вероятность того, что к 2030 или 2040 году в Арктике льда летом не будет. В отсутствии льда Северный морской путь станет свободным, но вечная мерзлота будет быстро таять, что приведет к негативным последствиям. «Вся инфраструктура построена на вечной мерзлоте, сами грунты в арктической зоне мягкие, поэтому, когда мерзлота оттает, все сооружения просто поедут и перестанут держаться", - добавляет ученый. В связи с этим парламент Якутии своевременно разрабатывает проект закона об охране и использовании вечной мерзлоты [6].

Проблемы возобновляемых источников энергии

Энергетики Дальнего Востока, куда относятся якутские энергетические предприятия, «по европейской моде» строят мегаваттные солнечные электростанции (СЭС) за полярным кругом в п. Батагай [7] (поэтому попали в книгу рекордов Гиннеса) и других населенных пунктах Якутии, где 8-10 месяцев заснеженная зима и полтора месяца нет солнца (полярные ночи), а летом солнце по низкой орбите вращается на 340-350°. Огромные по размеру солнечные модули, расположенные на нескольких гектарах земли, зимой надо чистить от снега, а летом еще вращать на трекерах за солнцем, чтобы не потерять до 70% получаемой электроэнергии, мыть специальной жидкостью от пыли и грязи. Как правило, ныне все промышленные солнечные модули в Якутии устанавливаются без трекера. При этом в мире пока не изобретена легкая по весу, маленькая по размеру, мощная по емкости и дешевая по стоимости аккумуляторная батарея для СЭС. Отсутствует также надежный и дешёвый инвертор для преобразования постоянного тока аккумуляторных батарей в переменный ток. Таким образом, в мировой практике использования солнечной энергии для выработки электричества самым слабым звеном является не солнечный модуль, а аккумуляторная батарея и инвертор. Все эти недостатки задерживают развитие солнечной энергетики, которая субсидируется всеми государствами, или все расходы СЭС включаются в тарифы (как в Якутии). Так же все государства субсидируют и лоббируют все виды возобновляемых источников энергии (ВИЭ), за исключением ГЭС. В итоге опять выигрывают энергетики, получив название «инноваторов» и/или «пользователей ВИЭ», а налогоплательщик остается в проигрыше. Такое же положение с использованием ветроэнергетические установки (ВЭУ) заряжают аккумуляторные батареи, где тоже применяются дорогие инверторы. ВИЭ в мировой практике из-за экономической неэффективности и высокой зависимости от природы даже островные государства не применяют.

Где тариф на электричество дешевле в мире

По данным за 2011-2014 годы, самый высокий тариф на 1 кВтч имеют островные государства (в пересчете курса доллара США 60 руб./дол) — на Соломоновых островах 56 руб./кВтч. самое дешевое электричество — в нефтедобывающих странах: Кувейт — 60 копеек/кВтч [8] (таблица 1). Россия за 2011-2014 годы в рейтинге стран с самым дешевым электричеством находилась на 13 месте — 2,96 руб./кВтч (по курсу рубля тех времен).

Тарифы на электричество на 1 января 2017 года для городского населения Якутии составили 5,47 руб./кВтч, для сельского – 3,83 руб./кВтч, при среднем тарифе по России – 3,83 руб./кВтч [19]. Себестоимость выработки одного киловатта электроэнергии, вырабатываемой на объектах дизельной генерации, составляет 32,78 руб./кВтч, централизованной – 3,67 руб./кВтч. При этом себестоимость выработки электроэнергии ДЭС в арктических районах Якутии еще в 2013 году была 97 руб./кВтч [20]. Поэтому промышленные потребители вынуждены нести дополнительную финансовую нагрузку, чтобы обеспечить более низкие тарифы для населения арктических районов, и объем перекрестного субсидирования в 2015 году составил 6 млрд. рублей [21]. К концу 2016 года Госкомцен Якутии уточнил объем перекрестного субсидирования и назвал 6,8 млрд. рублей в год и еще на выравнивание тарифов требует 13 млрд. рублей [22].

Таблица 1. - Сравнение с Россией самой высокой и низкой стоимостей электроэнергии с указанием среднемесячной заработной платы по странам мира.

Страна	Стоимость, руб./кВтч [8]	Среднемесячная зарплата, руб.
Соломоновы острова	56	1 200 [9]
Тонга	28	14 872 [10]
Ямайка	26,8	68 100 [11]
Новая Каледония	26,7	153 792 [12]
Острова Кука	25,44	60 000 [13] (предполагаемый)
Дания	24,22	243 000 [14]
Германия	22	84 224 с вычетом налогов [15]
CIIIA	7,50	от 150 000 до 240 000 и выше [16]
Китай	5,46	45 000 [17]
Россия	4,921	36 200 [18]
Кувейт	0,60	148 330 [18]
Саудовская Аравия	0,78	117 476 [18]
Венесуэла	1,86	1 547 [18]

Таким образом, если Правительство Якутии будет сидеть и ждать, когда появятся деньги в бюджете, то арктические и северные районы Якутии, использующие дизельные электростанции (ДЭС), дойдут до положения островных государств, как Соломоновы острова, Тонга и Острова Кука, где электроэнергию для освещения имеют ограниченное количество населения, и то с подачей только в темное время суток. Кроме того, Правительству Якутии надо учитывать изменение климата и необходимость удешевления услуги теплоснабжения котельных, решить вопрос возвращения молодежи в сельскую местность.

Предложения «Испытательного Полигона Холода» по инновациям

В сорока шести километрах от города Якутска создан на общественных началах «Испытательный Полигон Холода». Здесь зимой температура воздуха снижается до -60°C, летом жара до +40°C. Среднегодовая температура -9,3°C. С первых дней используем только СЭС и ветроэнергетические установки (ВЭУ), исследуем их на практике. После шести лет эксплуатации из-за отсутствия энергетического ветра и в связи с проблемами замерзания генератора ВЭУ в самые холодные дни, оставили только одну ВЭУ для демонстрации, остальные демонтировали. СЭС по выше перечисленным причинам (аккумуляторов и инвертора) экономически эффективна только до 1,5 киловатт мощности. К таким выводам по использованию ветряной и солнечной энергии мы пришли еще в 2010 году, и я обратился к коллегам по работе при ликвидации аварии на Чернобыльской АЭС по вопросу о разработке совершенно нового радионуклидного ядерного энергетического источника электрической и тепловой энергии (когенератора) микро и малой мощности от 15 кВт до 10 МВт (далее ЯЭИ). Мои знакомые физики-атомщики были против моей идеи, за исключением всемирно известного атомщика академика Виктора Михайлова, министра атомной энергии России 1992-1998 годы [23]. Мы с ним начали работать над созданием

¹ - (по курсу рубля 2017 года)

когенератора – ЯЭИ четвертого поколения на общественных началах. К нам присоединились молодые инноваторы Министерства обороны России. Виктор Никитович Михайлов в июне 2011 года скончался на 78-м году жизни. Результаты своих исследований использования ВИЭ и идею создания ЯЭИ нового поколения я докладывал на различных научных площадках, перед учеными энергетиками АТЭС в г. Владивостоке в октябре 2012 года, на Второй Всероссийской конференции развития малой распределенной энергетики в России в ноябре 2012 года в г. Москве, в Институте теплофизики им. С.С. Кутателадзе СО РАН в марте 2013 года [24], на международной научно-практической конференции «Арктика: перспективы устойчивого развития» в ноябре 2014 года в г. Якутске [25]. Вначале моя идея разработки микро и малой мощности ЯЭИ должного внимания не получила, но с 2014 года в Росатоме стали разрабатывать ЯЭИ микро мощностного диапазона по заказу МО России [26,27]. Была подтверждена теоретическая возможность такого направления создания ЯЭИ [28]. В настоящее время в Международном агентстве по атомной энергии (МАГАТЭ) поняли перспективность российских разработок атомных станций малой мощности (АСММ) и особо отмечают, что размер ядерного реактора является национальным решением, которое каждое государство должно принимать на основании собственных потребностей и существующих условий [29].

Ядерные энергетические источники четвертого поколения

Первые крупные атомные электростанции (АЭС) во всех странах мира в основном предназначались для получения оружейного плутония (наработки специальных нуклидов), а потом для выработки электроэнергии. Поэтому АЭС имели мощность более 300 МВт. АЭС мощностью менее 300 МВт называются атомными станциями малой мощности (АСММ). Более того, по правилам МАГАТЭ, если у энергетического источника на принципах цепной ядерной реакции теплоноситель на выходе имеет температуру менее 650°C, то такой ЯЭИ разрешается эксплуатировать в бытовых условиях при надлежащем контроле, как рентген-аппараты и МРТ в больницах. В нашем случае речь идет о температуре теплоносителя на выходе не более 600°С, а реакторная установка не взрывоопасная и совершенно безопасная. Кроме России в других странах мира нет разработок ЯЭИ наземного применения на 15 кВт и 100 кВт, не говоря уже о технологии их изготовления. В цепочке технологии изготовления реакторной установки микромощного ЯЭИ имеются несколько ноу-хау, которыми даже передовые ядерные центры США до сих пор практически не владеют. Об этом 7 января 1991 года одна из самых крупных газет США «Нью-Йорк таймс» опубликовала заявление Соединенных Штатов о заинтересованности установить один из разработанных в России миниреакторов, чтобы обеспечить энергией космические корабли [30]. Российские же ЯЭИ современных проектов мощностью в диапазоне 10 кВт - 10 МВт предназначаются для работы в течение 30-50 лет с одной загрузкой, без обслуживающего персонала, вырабатывая электроэнергию и тепло. Тепла вырабатывается в 4 раза больше, чем электроэнергии. Такие ЯЭИ относятся к четвертому поколению АЭС и получили в одной из разрабатываемых версий название твердооксидных тепловых станций (ТОТЭС) в связи с использованием твердооксидного ядерного топлива и реактора с тепловым спектром нейтронов. ТОТЭС работают с гарантированным обеспечением критичности реактора без нарабатывания нового топлива. Поэтому ТОТЭС не взрывоопасна. ЯИЭ рассматриваются в двух модификациях с использованием в качестве источника нагрева мини ядерного реактора и радиоизотопного источника. В руководстве Росатома уже думают о выделении финансирования на НИОКР по ЯЭИ четвертого поколения, но, по-видимому, не вполне

представляют, насколько широко подобные ЯИЭ могут быть востребованы. По нашим расчетам, для НИОКР по ТОТЭС на 15 и 100 кВт (миниреакторы или радиоизотопы) и АСММ на 5 и 10 МВт (миниреакторы) требуется около 10 миллиардов рублей (ФОТ четырех больших групп расчётчиков и конструкторов, проектировщиков, изыскателей, и др.).

Для примера, ТОТЭС на 100 кВт (далее ТОТЭС-100) без снижения электрической мощности может выработать более 0,2 Гкал/ч. Это в годовом объеме производства — 1752 Гкал., что позволяет отопить около 40 тыс. кв. м. или обеспечить теплом — 2 тыс. человек. Активная зона реактора ТОТЭС-100 будет иметь размеры небольшого бака и весить до 100 кг. ТОТЭС кроме реакторного устройства имеет газотурбинный преобразователь, систему теплофикации и теплосброса, и конечно обычный электрогенератор. ТОТЭС-100 по размеру в два раза меньше, чем ДЭС аналогичной мощности и может размещаться в контейнере, который устанавливается в колодце глубиной 4-6 м. (требования МАГАТЭ для АСММ). Предварительная стоимость серийного образца — 100 млн. рублей. Стоимость серийного образца сильно зависит от количества заказов. При большом количестве заказов стоимость одной ТОТЭС-100 будет во много раз меньше. По окончанию срока службы ТОТЭС направляется для утилизации в специализированное предприятие.

Предлагаемые практические действия

Для разработки технико-экономического обоснования (ТЭО), Технического задания (ТЗ) использования ТОТЭС в холодных условиях Якутии и лоббирования НИОКР в ФЦП России или Росатоме предлагаю в Якутске под моим руководством создать временный творческий коллектив (ВТК) с финансированием оплаты работы 4 специалистов и командировочных расходов. ТЭО - не только сбор статистических данных о ДЭС и котельных в Якутии, но и глубокий экономический анализ энергетической экономики Якутии, арктической зоны России и «дальневосточного гектара» в том числе при использовании ЯИЭ. Разработка ТЗ – один из сложных этапов, но для нашего небольшого коллектива это будет посильным, так как мы практически знаем всех ученых-энергетиков в Якутске, которых можно привлечь, специалистов по «турбинам», дизелям, генераторам, инженеров ЯГРЭС, ЯТЭЦ, «Сахаэнерго», которые имеют 40-летний опыт практических работ в эксплуатации ГТУ и дизелей в сложных климатических условиях Якутии. Я сам работал в ОАО «Якутскэнерго» более 10 лет и как профессиональный военный инженер долгие годы занимался эксплуатацией и испытанием газотурбинных и поршневых двигателей военного назначения в сложных климатических условиях Хабаровского края, Амурской и Сахалинской областей, северного Казахстана, Подмосковья, Якутии и других регионах бывшего Советского Союза.

С учётом новизны и пилотного характера создания ТОТЭС, актуальности проблемы когенерации электрической и тепловой энергии на базе ЯИЭ четвертого поколения, при заинтересованности общественности Якутии НИОКР по данной проблеме можно в 2017 году включить в ФЦП. Если НИОКР будет начат в этом году, то первый опытно- демонстрационный образец ТОТЭС можно получить через 3-4 года достаточно напряжённой работы всех участников кооперации и приступить к испытанию под Якутском в «Испытательном Полигоне Холода». Мы ученых-атомщиков можем убедить в первую очередь разработать и испытать ТОТЭС на 15 кВт для обеспечения потребностей по электричеству и теплу (когенерации) «дальневосточного гектара». «Гектары» будут выдаваться в отдаленных местностях,

вне централизованного энерго-теплоснабжения, поэтому обладатели «гектаров» будут первыми покупателями.

Американцы тоже поняли экономическую бесперспективность в ближайшие годы ВИЭ и тоже уже разрабатывают АСММ мощностью 1-10 МВт [31]. Имеется опасность: узнав о российских разработках ТОТЭС в материалах МАГАТЭ, зарубежные конкуренты — США, Китай, Южная Корея, Европейский Союз и другие могут быстро вложить деньги на НИОКР и раньше России создать ТОТЭС.

В ходе обсуждения «Стратегии 2030» Якутии я через Интернет озвучил проблему решения северного завоза по доставке дизельного топлива и угля, возможных последствий глобального потепления для Якутии [32], но подвижек пока по ней нет. В январе 2011 года я также направлял открытые Обращения к руководству республики по данному вопросу через персональный раздел, предоставленный мне общественно-политической интернет газетой «В Якутии ги» [33]. Практически ничего не изменилось, и, как отметил в начале статьи, были одни «затыкания» чрезвычайных ситуаций, типа доставки угля самолетами для котельных арктических районов.

Роль общественности России по внедрению инновационного проекта ТОТЭС

Уважаемые жители России, предлагаю рассмотреть мое предложение для объединения усилий в практическом решении электро-тепло обеспечения отдельных домов и малых населенных пунктов арктических и северных районов России. Внедрение надо начинать с Якутии, где имеется сегодня первая потребность и готовые кадры для внедрения инновационной технологии. Внесите мне свои предложения и замечания по созданию конкурентоспособной российской твердооксидной тепловой электростанции (ТОТЭС) и как финансировать ВТК. В России, по сведениям разных источников, число ДЭС более 25 тысяч [34] или более 50 тысяч [35], а котельных еще больше. В дальневосточную программу бесплатного выделения одного гектара земли на 12 февраля 2017 года подали заявку 58887 человек [36]. Это потенциальные потребители ТОТЭС-15. Поэтому как в русской пословице «дорога ложка к обеду», промышленный выпуск ТОТЭС-15 стал бы инновационной поддержкой социальной «дальневосточного программы Правительства России гектара» подачи общественности России. Древняя народная мудрость гласит: если хочешь помочь голодному, дай ему не рыбу, а дай удочку. Хотя наша молодежь не голодная, но для них для возвращения к землям предков, ТОТЭС смогут играть роль «удочки» для привлечения молодежи к селу и освоению заброшенных сельских угодий в России. ТОТЭС прорывное энергетическое техническое устройство шестого технологического уклада, и я знаю дорожную карту создания твердооксидной тепловой электростанции.

В порядке примера безопасности радионуклидных ядерных источников энергии (радиоизотопные версии) можно привести использование их в медицине в качестве ядерного кардиостимулятора (ЯКС). Так в США первый ЯКС на основе плутония-238 был установлен в 1973 году. Тогда ЯКС стоил 23 тыс. доллара США. Пациентка до сих пор проживает в США в добром здравии [37], а пользователей ЯКС в мире с каждым годом ныне растет. В России ЯКС собственного производства тоже широко применяются. Второй пример: в прошлом году российские ученые создали ядерную батарейку переменного напряжения на 10 вольт, размером 1см х 0,5 см, используя изотоп никеля-63, со сроком работы 50 лет, стоимостью 10 тыс. рублей для электропитания различных датчиков и приборов [38]. Все математические и

экономические расчеты ТОТЭС и АСММ проведены мною на основе книги «Почти все о ядерном реакторе» [39] и других [40,41] специализированных литературных источников открытой печати.

Литература

- 1. Электронный ресурс: http://yakutsk.ru/news/Kriminal/v_sele_kolymskoe_pomimo_nekhvatki_topliva_zakanchi vayutsya_produkty/.
- 2. Электронный ресурс: http://news.ykt.ru/mobile/article/52176.
- 3. Электронный pecypc: https://regnum.ru/news/accidents/2233404.html .
- 4. Электронный pecypc: http://www.pravda.ru/districts/fareast/yakutsk/05-11-2013/1180851-zavoz-0/
- 5. Электронный ресурс: <u>http://tass.ru/nauka/3985150</u>.
- **6.** Электронный pecypc: http://ysia.ru/obshhestvo/parlament-yakutii-neobhodimo-sozdat-edinyi-tsentr-monitoringa-vechnoi-merzloty/
- 7. Электронный ресурс: http://sdelanounas.ru/blogs/64098
- 8. Электронный ресурс: http://www.vrx.ru/treasury/346.html.
- 9. Электронный pecypc: http://mogu.by/news/finansi/Gde_zarplaty_samye_mizernye.html
- 10. Электронный ресурс: http://tonga.land.am/faq.
- 11. Электронный pecypc: http://www.uadream.com/tourism/America/Jamaica/element.php?ID=93894.
- 12. Электронный ресурс: http://travelask.ru/questions/9815-novaya-kaledoniya-kakie-tseny.
- 13. Электронный ресурс:http://geoclab.ru/news/?ELEMENT_ID=4109
- 14. Электронный pecypc: http://www.uadream.com/tourism/europe/Denmark/element.php?ID=92408
- 15. Электронный ресурс: http://www.dezona.ru/germany/socium/professii-i-zarplaty.htm.
- 16. Электронный ресурс: http://visasam.ru/emigration/canadausa/zarplata-v-ssha.html
- 17. Электронный ресурс:http://visasam.ru/emigration/rabota/srednyaya-zarplata-v-kitae.html
- 18. Электронный ресурс: http://bs-life.ru/rabota/zarplata/srednyaya-zarplata2016.html
- 19. Электронный ресурс: http://yakutskenergo.ru/Urid lic/tariffs/electro.php
- 20. Электронный ресурс: https://rg.ru/2013/07/02/energetika.html
- 21. Электронный pecypc: http://yakutsk.bezformata.ru/listnews/tarif-na-elektroenergiyu-dlya-promishlennih/53317158/.
- 22. Электронный ресурс: http://www.1sn.ru/180790.html.
- 23. Электронный ресурс: http://straw-house.ru/d/361872/d/dlya-holodnoy-sibiri-solnechnye-stancii-i-vetryaki-ranovaty-ili-proryvnye-energoistochniki-xxi-veka-dlya-energoobespecheniya-otdelnyh-domov-i-malyh-naselennyh-punktov-sibiri.pdf
- 24. Электронный pecypc: https://topwar.ru/86668-nachata-razrabotka-malogabaritnyh-atomnyh-elektrostanciy.html.
- 25. Будылов Е.Г., Тревгода М.М., Глебов А.П. Конкурентоспособность ядерных энергоисточников особо малой мощности в условиях территорий Крайнего Севера России // Международная научно-практическая конференция «Безопасность, эффективность и экономика атомной энергетики 2016».-Москва: АО «Концерн Росэнергоатом», 2016. С 232-233. Электронный ресурс:http://mntk.rosenergoatom.ru/mediafiles/u/files/2016/Book_TEZISY.pdf
- 26. Пахомов А.А., Чомчоев А.И. Возврат России к мировому лидерству по инновационным технологиям в Арктике веление времени. Электронный ресурс: http://elibrary.ru/item.asp?id=24138561

- 27. Атомные станции малой мощности: новые направления развития энергетики. Том 2 / под редакцией академика РАН А.А.Саркисова. М., Академ-Принт, 2015. 387 С. Электронный ресурс: http://www.ibrae.ac.ru/docs/109/assm_t2_2015_sq.pdf
- 28. Михайлов, Виктор Никитович. Электронный ресурс: https://ru.wikipedia.org/wiki/Mихайлов, Виктор Никитович
- 29. Электронный pecypc: http://yakutiafuture.ru/2017/01/04/razrabotchiki-strategii-2030-yakutii-ne-pravilno-ponimayut-zelenuyu-ekonomiku/.
- 30. William J. Broad, «U.S. Ready to Buy Advanced Reactor from the Soviets», New York Times, 7 January 1991, PP.1, B8.
- 31. Электронный pecypc: https://texnomaniya.ru/v-ssha-zapushen-bezopasniiy-yaderniiy-reaktor-1-mvt-na-Li-7.
- 32. Электронный ресурс: http://www.v-yakutia.ru/?id=17627.
- 33. Электронный ресурс: http://www.atominfo.ru/newsj/q0727.htm
- 34. Н.И.Воропай, Б.Г.Санеев, И.Ю.Иванова, А.К.Ижбулдин. Сравнительная эффективность использования атомных станций малой мощности в локальных энергосистемах на востоке России. Труды Международной научно-технической конференции «Атомные станции малой мощности актуальное направление развития атомной энергетики». 2013, М., С. 59-71.
- 35. А.Ф.Дьяконов, Э.М.Перминов. Возобновляемая энергетика важный компонент улучшения энергоснабжения и повышения энергообезопасности страны. Труды Международной научно-технической конференции «Атомные станции малой мощности актуальное направление развития атомной энергетики». 2013, М., С. 149-166.
- 36. Дальневосточный гектар. Электронный ресурс: https://надальнийвосток.pd.
- 37. Электронный ресурс: http://www.medlinks.ru/article.php?sid=31151.
- 38. Электронный ресурс: http://sdelanounas.ru/blogs/75346/?pid=758909
- 39. Матвеев Л.В., Рудик А.П. Почти все о ядерном реакторе». М., Энергоатомиздат. 1990. 240 С.
- 40. Создание первой советской ядерной бомбы // главный редактор В.Н.Михайлов. М., Энергоатомиздат, 1995. 448 С.
- 41. Микуленко К.И., Чомчоев А.И., Готовцев С.П. Геолого-географические условия проведения и последствия подземных ядерных взрывов на территории Республики Саха (Якутия) // ответственный редактор д.г.-м.н. В.С.Ситников. Я., Издательство ЯНЦ СО РАН, 2006. 196 С.