Уважаемые коллеги!
Гидродинамика, тепломассообмен и волновые процессы в многофазных средах
Тепломассообмен при фазовых превращениях
Конвективные течения в однофазных средах
Методы управления турбулентностью и интенсификация тепломассопереноса
Процессы переноса при физико-химических превращениях, включая горение
Процессы в разреженных газах и плазме
Теплофизические свойства веществ и лучистый теплообмен
Теплофизические проблемы энергетики, энергоэффективность и энергосбережение
Постер формата А1 (841 х 594 мм) вертикальный. Категорически не допускается использование меньшего/большего форматов, как и склейка нескольких постеров меньшего формата.
Постер должен содержать: название доклада, ФИО(полностью) докладчика, ФИО (сокращенно) соавторов, организации (во возможности с лого) авторов. Содержательная часть остается на усмотрение авторов, однако, в ней следует отобразить цель и задачи исследования, актуальность работы, схемы (при наличии) и параметры экспериментальных стендов, результаты (включая рисунки, графики, таблицы и т.д.), а также выводы. Также можно отразить благодарности, включая источник финансирования. Убедительно просим следовать примеру оформления постера, представленного на сайте.
Сергей Сажин, University of Brighton, UK
Spherical and non-spherical droplets: analytical and numerical models
Recent developments in the modelling of heating and evaporation of spherical and non-spherical, mono- and multi-component droplets will be reviewed. The focus will be on simple models, compared with Direct Numerical Simulations, which, despite their simplicity, can capture the most significant features of the phenomena. For spherical droplets, these models are based on the analytical solutions to the one-dimensional heat transfer and component diffusion equations in a composite droplet. The analytical solutions to these equations were obtained, implemented into the numerical code, and used at each time step of the calculations.
The radiative heating of the droplet will be considered assuming that the droplet is semi-transparent. The effect of a supporting wire will be taken into account assuming that heat supplied from the wire is distributed instantaneously and homogeneously throughout the whole droplet volume.
A new model for mono-component droplet heating and evaporation will be reviewed. This model links the previously developed liquid phase model, using the analytical solution to the heat transfer equation at each time step, and the gas phase model, using the solution to the equations of the conservation of mass, momentum, and energy leading to an explicit expression for the Nusselt number and implicit expression for evaporation rate of the droplet. The latter expressions are used as boundary conditions for the liquid phase model. The new model was verified using a comparison between its predictions of the droplet temperatures and radii for very large liquid thermal conductivity and those of the model, using the assumption that the thermal conductivity of liquid is infinitely large. The closeness between the predictions of these models supports the reliability of both.
The model was validated using the experimental data obtained at the Heat and Mass Transfer laboratory of Tomsk Polytechnical University referring to the heating and evaporation of droplets. The deviations between the measured and predicted droplet radii and temperatures in most cases were shown to be within experimental error margins.
M.K. Lei, Dalian University of Technology, China
High-Performance Manufacturing of Products Based on Manufacturing Thermodynamics
Greater integration of materials, product and processes of multi-components system is demanded ultimately toward a knowledge-based control of advanced manufacturing technologies. High-performance manufacturing (HPM) of product is a big challenge for integrated design and processing toward desired high performance due to highly ill-posed multi-objective optimization problem. A coupled design and processing modeling of product includes full finite element structural model of the system connected with manufacturing thermodynamics models of its components. The key components and their key processing/assembling processes identify on sensitivity analysis of accumulative surface integrity change in process chains and then in service under localized service conditions of components in data and model regularization of material-oriented regularization method. The system performance is determined by multiple components sum of accumulative surface integrity change under the localized service conditions allocated from the system service conditions. The manufacturing inverse problem to synergistically optimize the design and processing parameters is solved on sensitivity matrix algorithm with characteristic process signatures of the key components in the key process chains. A canned main coolant pump (MCP) prototype as a study case with the optimized geometry, materials and structure toward required dynamic performance is successfully manufactured in the optimized desigh and processing parameters by the additive manufacturing, near net shape manufacturing, joining/cladding, and surface modification/coating.
Wojciech Lipiński, The Cyprus Institute, Nicosia, Cyprus
Multiphase transport phenomena in high-temperature solar thermal systems
High-flux solar irradiation obtained with optical concentrators is a viable source of clean process heat for high-temperature physical and chemical processing. Traditionally, the progress in concentrating solar thermal technologies has been driven by advancements in concentrated solar power, in particular in the context of large-scale dispatchable power generation. Solar thermochemistry is concerned with direct thermochemical production of chemical fuels and materials processing, without intermediate electricity generation, promising high energy conversion efficiency. In this presentation, recent advances in numerical modelling of multiphase transport phenomena in high-temperature solar thermal systems are discussed. Two types of multiphase flows recently investigated for efficient collection, conversion and storage of concentrated solar energy are focused on: (1) particle–gas flows featuring polydisperse particle transport under direct concentrated solar irradiation, and (2) boiling sodium flows. Governing equations and numerical solution methods are elaborated along with selected results obtained for free-falling particle and liquid sodium solar receivers. Examples of on-sun demonstration and pilot systems and the potential for improving the efficiency of solar energy collection, conversion and storage processes are discussed.
Yu Rao, Shanghai Jiao Tong University, China
Vortex Methods for Efficient Heat Transfer Enhancement for Gas Turbine Blade Cooling
The talk presents the latest research developments in vortex flow methods for efficient heat transfer enhancement for gas turbine blade cooling in my research group at Shanghai Jiao Tong University in China. I will first present a fundamental study related to the vortex flow by various dimpled surfaces for heat transfer enhancement, and the intensified vortex flow by the rib turbulator and dimple hybrid structures for heat transfer enhancement in improving the rib turbulated cooling and the latticework matrix cooling for gas turbine blades. Furthermore, the vortex flow by the micro ribs on the surface is also studied for efficient heat transfer enhancement in jet impingement cooling. In an applied study, vortex flow control is achieved through novel guiding pin fins in wedged channel for improving the gas turbine blade trailing edge cooling.
Сергей Старинский, Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск
Optical tweezer and nanojet technology in laser processing and additive microstructuring
Light, a phenomenon both enigmatic and ubiquitous throughout history, has captivated minds for centuries. Scientists and Engineers driven by technological advancements, managed to exploit light for developing a formidable source of coherent, monochromatic, collimated and high intensity photons: the LASER. In popular consciousness, LASER is often associated either with illuminating substances—laser pointers and laser scanners—or, much more frequently, as tools for destroying matter, from laser cutting machines for metal to laser guns in science fiction movies. Nowadays, LASER technology is extensively used both for industrial and research purposes. To this end, engineers and researchers work on optical additive technologies by using LASER enabling intricate manipulation of matter and allowing the reproduction of highly complex structures with impressive precision. For instance, two-photon polymerization enables us to create a replica of the Venus de Milo with micron and even submicron resolution.
An even more fascinating application of LASER is the ability to manipulate microscopic scale objects, known as optical tweezers (trapping) technology. Optical trapping is a non – invasive and non – destructive technology, which extends to the delicate control even of living cells without causing them any discomfort. Discoveries explaining and applying these phenomena have already been recognized with several Nobel Prizes in Physics: first in 1997 for the development of methods for laser cooling and trapping of atoms, for achieving Bose-Einstein condensation in 2001, for the first super-resolution microscope for single-molecule localization in 2014, and also for optical tweezers and their application in biological systems in 2018. In this introductory lecture, we will address the principles of optical tweezers, examining the key approximations for describing their operation. We will explore the principles of forming optical nanojets and the potential for integrating these technologies. Primarily, optical tweezers and LASER processing will be utilized to nanofunctionalize 2-D materials and implement highly precise direct laser spots. We will also attempt to answer questions such as whether it is possible to approach and surpass the diffraction limit in the precision of the technological process, which medium is more promising—liquid or gas, and whether liquid boiling during processing is a friend or foe. Answers to these questions will allow a better understanding of the nature of the involved technologies and confirm that solving the related physical and engineering challenges is largely connected to the engineering of thermophysics and physical hydrodynamics.
Родион Степанов, Институт механики сплошных сред УрО РАН, Пермь
Перенос в спиральной гидродинамической турбулентности
Кинетическая спиральность определяется как корреляция между полем скорости и его завихренностью. Спиральность, как и энергия, является невязким инвариантом уравнений гидродинамики. В отличие от энергии, которая является мерой интенсивности турбулентности, спиральность является мерой запутанности вихревых трубок. Эффект спиральности может проявляться как на спектральном переносе турбулентной энергии между различными масштабами, так и влиять на поток импульса в физическом пространстве, вызванного напряжениями Рейнольдса. В докладе объясняется физическое значение этого эффекта и описывается математическая модель спиральной турбулентности. Помимо подавления переноса, неоднородная спиральность в сочетании с вращением может вызывать крупномасштабное течение. Однако при наличии внешних источников мелкомасштабной спиральности обратный каскад энергии возникает даже в случае однородной и изотропной турбулентности. Будут рассмотрены результаты прямого численного моделирования, подтверждающие генерацию глобального течения под действием спиральности, и приведены некоторые возможные приложения к явлениям в геофизических и астрофизических течениях.
Сергей Старинский, Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск
Optical tweezer and nanojet technology in laser processing and additive microstructuring
Light, a phenomenon both enigmatic and ubiquitous throughout history, has captivated minds for centuries. Scientists and Engineers driven by technological advancements, managed to exploit light for developing a formidable source of coherent, monochromatic, collimated and high intensity photons: the LASER. In popular consciousness, LASER is often associated either with illuminating substances—laser pointers and laser scanners—or, much more frequently, as tools for destroying matter, from laser cutting machines for metal to laser guns in science fiction movies. Nowadays, LASER technology is extensively used both for industrial and research purposes. To this end, engineers and researchers work on optical additive technologies by using LASER enabling intricate manipulation of matter and allowing the reproduction of highly complex structures with impressive precision. For instance, two-photon polymerization enables us to create a replica of the Venus de Milo with micron and even submicron resolution.
An even more fascinating application of LASER is the ability to manipulate microscopic scale objects, known as optical tweezers (trapping) technology. Optical trapping is a non – invasive and non – destructive technology, which extends to the delicate control even of living cells without causing them any discomfort. Discoveries explaining and applying these phenomena have already been recognized with several Nobel Prizes in Physics: first in 1997 for the development of methods for laser cooling and trapping of atoms, for achieving Bose-Einstein condensation in 2001, for the first super-resolution microscope for single-molecule localization in 2014, and also for optical tweezers and their application in biological systems in 2018. In this introductory lecture, we will address the principles of optical tweezers, examining the key approximations for describing their operation. We will explore the principles of forming optical nanojets and the potential for integrating these technologies. Primarily, optical tweezers and LASER processing will be utilized to nanofunctionalize 2-D materials and implement highly precise direct laser spots. We will also attempt to answer questions such as whether it is possible to approach and surpass the diffraction limit in the precision of the technological process, which medium is more promising—liquid or gas, and whether liquid boiling during processing is a friend or foe. Answers to these questions will allow a better understanding of the nature of the involved technologies and confirm that solving the related physical and engineering challenges is largely connected to the engineering of thermophysics and physical hydrodynamics.
Ali Koşar, Sabanci University, Турция
Functional Surfaces for Manipulation of Phase Change Phenomena
Boiling, cavitation, droplet condensation and freezing are considered as basic phase change phenomena. These phase change phenomena can be manipulated and controlled using surface modification as a passive method. One of the most promising approaches in surface modification include the use of modified surfaces with mixed wettability along the surface, which pay way to significant performance enhancements leading to energy savings. It is also possible to obtain optimized surface configurations depending on the operating condition and application as well as the phase change phenomenon. Such optimization efforts will make it possible to maximize energy savings and efficiency in thermal-fluids systems involving phase change and will further contribute to tackle with global warming. In this talk, our recent efforts and results in this topic will be presented and recent developments and trends in this field will be discussed.
The second part of the talk will focus on scalable and practical method for having the same effect of modified surfaces with surface enhancements via next generation bio-coatings based on hyperthermophilic archaea and antifreeze proteins, which could allow to have durable, environmentally friendly, inexpensive, and unique structures and to offer surface modification without the use of any cleanroom fabrication techniques. The results of studies on these new generation surfaces will be presented for boiling, dropwise condensation and freezing.
Сергей Старинский, Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск
Optical tweezer and nanojet technology in laser processing and additive microstructuring
Light, a phenomenon both enigmatic and ubiquitous throughout history, has captivated minds for centuries. Scientists and Engineers driven by technological advancements, managed to exploit light for developing a formidable source of coherent, monochromatic, collimated and high intensity photons: the LASER. In popular consciousness, LASER is often associated either with illuminating substances—laser pointers and laser scanners—or, much more frequently, as tools for destroying matter, from laser cutting machines for metal to laser guns in science fiction movies. Nowadays, LASER technology is extensively used both for industrial and research purposes. To this end, engineers and researchers work on optical additive technologies by using LASER enabling intricate manipulation of matter and allowing the reproduction of highly complex structures with impressive precision. For instance, two-photon polymerization enables us to create a replica of the Venus de Milo with micron and even submicron resolution.
An even more fascinating application of LASER is the ability to manipulate microscopic scale objects, known as optical tweezers (trapping) technology. Optical trapping is a non – invasive and non – destructive technology, which extends to the delicate control even of living cells without causing them any discomfort. Discoveries explaining and applying these phenomena have already been recognized with several Nobel Prizes in Physics: first in 1997 for the development of methods for laser cooling and trapping of atoms, for achieving Bose-Einstein condensation in 2001, for the first super-resolution microscope for single-molecule localization in 2014, and also for optical tweezers and their application in biological systems in 2018. In this introductory lecture, we will address the principles of optical tweezers, examining the key approximations for describing their operation. We will explore the principles of forming optical nanojets and the potential for integrating these technologies. Primarily, optical tweezers and LASER processing will be utilized to nanofunctionalize 2-D materials and implement highly precise direct laser spots. We will also attempt to answer questions such as whether it is possible to approach and surpass the diffraction limit in the precision of the technological process, which medium is more promising—liquid or gas, and whether liquid boiling during processing is a friend or foe. Answers to these questions will allow a better understanding of the nature of the involved technologies and confirm that solving the related physical and engineering challenges is largely connected to the engineering of thermophysics and physical hydrodynamics.
Qiuwang Wang, Xi’an Jiaotong University, China
Thermal resistance regulation methodology for energy saving and storage transfer processes
Advanced and efficient energy saving and storage technologies play important roles to the fields of energy, power, petrochemical, metallurgy, refrigeration, aerospace and other fields. For energy systems, traditional design calculation often relies on the overall lumped parameter method, which will face problems such as hard to clearly show local characteristics and calculated difficulties in the analysis process. This report presents a thermal resistance regulation method, based on thermal resistance networks and thermoelectric analogy. The thermal resistance field is constructed by assigning the thermal resistance for discrete control units at points. From the energy transfer, the concept of multi-dimensional conduction-advection thermal resistance in parallel in fluid domain is proposed, and the conduction-advection thermal resistance network with heat capacity is constructed, which enables the integration of momentum and heat transfer in the fluid domain and explains the mechanism of local energy exchange. The relative relationship between thermal resistance and energy is investigated by order-of-magnitude analysis from the parallel thermal resistance analysis. Subsequently, based on analysing the relative magnitude of the thermal resistance distribution, a computational expression for the local thermal resistance is obtained. On this basis, typical heat transfer processes such as double-sided heat transfer are studied, and local thermal resistance analysis methods such as local thermal resistance ratio and local total thermal resistance are proposed. Afterwards, a large amount of data is further analyzed and fitted to construct a correlation equation between the local thermal resistance and the macroscopic parameters, which provides the means to guide the practical engineering applications. The conduction-advection parallel thermal resistance network is important to analyze the flow and heat transfer processes and guide the regulation and optimization of the heat transfer processes. The local thermal resistance method, on the other hand, achieves the accuracy of calculation and the simplicity of design from the computational heat transfer method, and provides the approach to realization for engineering applications. The thermal resistance adjustment principle based on the local thermal resistance method is an important guide for the accurate design of energy saving and storage devices.
Виктор Терехов, Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск
Проблемы конвективного тепломассопереноса. Вклад сибирской школы
Сибирская школа теплофизиков внесла значительный вклад в развитие исследований в области конвективного теплообмена в сложных условиях, пристенной турбулентности и методов управления интенсивностью процессов тепломассопереноса. Практически со дня основания Института теплофизики это направление становится приоритетным и ему постоянно уделяется пристальное внимание. Такой интерес к проблемам конвективного тепломассообмена был продиктован важными приложениями в различных областях техники – энергетике, аэрокосмической технике, химических технологиях и многих других энергоемких аппаратах и устройствах. Данное направление было заложено С.С. Кутателадзе совместно с А.И. Леонтьевым. Ими была разработана асимптотическая теория турбулентного пограничного слоя, основанная на удивительных свойствах пограничных слоев с исчезающей вязкостью. Полученные соотношения для коэффициентов переноса при сложных условиях течения (вдув, отсос, неизотермичность, сжимаемость, неоднородность течения и др.) поражают своей простотой и одновременно точностью прогнозирования. Поэтому разработанные на основе выводов асимптотической теории методы расчета течения и теплообмена получили большую популярность у инженеров – практиков. Подобные идеи были использованы и при разработке методов расчетов тепловой защиты теплонапряженных поверхностей, что также является важным вкладом сибирских исследователей в теорию и практику теплообмена. Особое внимание уделялось развитию новых методов теплофизического эксперимента, созданию уникальных опытных стендов, методам автоматизации сбора и обработки результатов измерений. В докладе представлена ретроспектива развития исследований вплоть до нынешних дней. Рассмотрен широкий круг актуальных задач, над которыми в настоящее время работают исследователи ИТ СО РАН, такими, как управление теплообменными процессами при вынужденной и естественной конвекции, интенсификация теплообмена, тепловая защита и многое другое.
Павел Скрипов, Институт теплофизики УрО РАН, Екатеринбург
В докладе будут рассмотрены следующие вопросы: история исследований явления перегрева, начало отсчета – от первых систематических работ сотрудников университета Торонто; история исследований, осуществленных в Уральской теплофизической школе, начиная с 50-х годов; современные методы и результаты измерения температуры достижимого перегрева и свойств перегретых жидкостей и сверхкритических флюидов в существенно нестационарных условиях; характерные черты вскипания растворов с ограниченной растворимостью компонентов, имеющих нижнюю критическую температуру растворения, в областях не вполне устойчивых (находящихся выше бинодали жидкость-жидкость и/или бинодали жидкость-пар) и неустойчивых (находящихся выше спинодали жидкость-жидкость) состояний; перспективные, на взгляд автора, задачи в области перегрева сложных объектов.
В журнале «Eurasian Journal of Mathematical and Computer Applications» (https://ejmca.enu.kz/), индексируемом в Scopus (Q3, IF = 0.82), (стоимость публикации – 22 тыс. руб. за статью)
В журнале «Frontiers in Heat and Mass Transfer» (https://www.techscience.com/journal/fhmt), индексируемом в Scopus (Q3, IF = 1.8), (стоимость публикации – 50 тыс. руб. за статью)
Уважаемые участники XL Сибирского теплофизического семинара!
При желании опубликовать по материалам конференции статью в рецензируемом журнале просим Вас заполнить настоящую форму до 16.06.2024!
11.11.2024 Выложен сборник тезисов СТС40
18.08.2024 Обновлена рабочая программа конференции
07.06.2024 Выложена форма о желании опубликовать полнотекстовую статью
29.05.2024 Обновлена информация по организационному сбору.
29.05.2024 Обновлена информация по публикациям.