K

Костогруд Илья Алексеевич

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЦЕССОВ ТЕРМИЧЕСКОГО СИНТЕЗА ГРАФЕНА НА МЕДИ И ПЕРЕНОСА ГРАФЕНА НА ПОЛИМЕР

01.04.14 – теплофизика и теоретическая теплотехника

Автореферат

диссертации на соискание ученой степени кандидата физико-математических наук

Новосибирск, 2020

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте теплофизики им. С.С. Кутателадзе Сибирского отделения Российской академии наук.

Научный руководитель: кандидат физико-математических наук Смовж Дмитрий Владимирович

Официальные оппоненты:

Дмитриев Александр Сергеевич, доктор технических наук, заведующий Лабораторией теплофизики наноструктур Института атомной энергетики, профессор Кафедры низких тепловой Федерального государственного бюджетного температур образовательного учреждения высшего образования «Национальный исследовательский университет «МЭИ», г. Москва.

Окотруб Александр Владимирович, доктор физ.-мат. наук, профессор, заведующий Лабораторией физикохимии наноматериалов Федерального государственного бюджетного учреждения Института неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук, г. Новосибирск.

Ведущая организация: Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук (ОИВТ РАН), г. Москва.

Защита состоится 25 ноября 2020 года в 11 часов 30 минут на заседании диссертационного совета Д 003.053.01 при Федеральном государственном бюджетном учреждении науки теплофизики им. С. С. Кутателадзе Сибирского отделения Российской академии наук по адресу: 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 1.

С диссертацией можно ознакомиться в библиотеке и на сайте теплофизики СО РАН, www.itp.nsc.ru. автореферат в двух экземплярах, заверенный печатью учреждения, просьба направлять на имя ученого секретаря диссертационного совета Д 003.053.01 по адресу: 630090, г. Новосибирск, пр. Академика Лаврентьева, д. 1. (e-mail: dissovet@itp.nsc.ru)

Автореферат разослан 2020 г.

Ученый секретарь диссертационного совета, д.ф.-м.н., профессор

Ввизу Кузнецов Владимир Васильевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы.

Перспективными применениями графенового покрытия являются нагревательные элементы термоакустические прозрачные И преобразователи. В данных приложениях важно создавать поликристаллическую графеновую пленку с заданным размером 2D кристаллов, размера существенно так как от ИХ температурный профиль поверхности. Термическое газофазное осаждение (CVD) углеводородов на медных подложках является одним из наиболее многообещающих методов получения графеновых большой площади. Одним главных ИЗ термического газофазного осаждения при атмосферном давлении (APCVD) от термического газофазного осаждения при пониженном давлении (LPCVD) является длина свободного пробега углеродных радикалов по поверхности подложки. Коэффицент диффузии реагентов по поверхноси гораздо ниже для APCVD по сравнению с LPCVD. Поэтому в графеновых пленках появляется многослойных графеновых островков в процессе роста APCVD. Другой фактор это сублимация металла с поверхности подложки при температурах близких к плавлению. При атмосферном давлении данный процесс в значительной степени подавляется, что позволяет использовать более высокие температуры синтеза по сравнению с LPCVD. Кроме того установки для APCVD менее требовательны к герметизации, что делает этот метод предпочтительным в создании "roll-to-roll" систем для крупномасштабного производства графена. Качество графена, получаемого таким способом, определяется не только параметрами синтеза, но также существенно зависит от структуры подложки. Для синтеза в качестве подложки наиболее часто используют медную поликристаллическую холоднокатаную фольгу. Для развития методов выращивания пленок графена с определенной плотностью дефектов крайне важно эволюцию размера и ориентации зерен подложки в условиях предварительной термической обработки и в условиях роста графена. Для большинства приложений графен после синтеза необходимо перенести с металлической подложки на целевую подложку. При переносе важно минимизировать повреждения графеновой пленки, так как они приводят к значительному изменению свойств графена. Основные способы, развиваемые в литературе, основаны на удалении медной подложки путем травления меди в различных кислотах. Однако для практического внедрения графена необходимо развивать

способы переноса с сохранением медной подложки для её повторного использования.

На сегодняшний день актуальны исследования, направленные на: развитие методик получения монокристаллической меди из поликристаллической пленки с различной ориентацией путем ее термической обработки в условиях близких к фазовому переходу жидкость-кристалл, расширение экспериментальной базы режимов термического синтеза графена на меди и расчет термодинамических параметров, определяющих процессы роста графенового 2D кристалла, развитие методов механического переноса графена, обеспечивающих минимальную дефектность получаемых графенполимерных композитов.

Целью настоящей работы является определение влияния условий отжига на структуру медной подложки, определение влияния параметров синтеза на рост графена, а также изучение условий переноса графеновых пленок с медной подложки на полимер.

Поставлены и решены следующие задачи:

Развить методику APCVD синтеза графена на медной подложке. Исследовать эволюцию поверхностной текстуры меди в процессе её термической обработки при температурах близких к точке плавления меди в атмосферах аргона и водорода. Исследовать влияние температуры синтеза и концентрации газов на структуру графеновых пленок. Определить диапазон параметров для синтеза сплошных пленок однослойного и многослойного графена.

Реализовать методики диагностики графена на различных поверхностях, обеспечивающие высокий уровень достоверности.

Исследовать влияние термических деформаций и диффузии газов на структуру графеновой пленки при переносе с меди на полимер. Определить роль термических расширений системы медь/графен/полимер, возникающих во время переноса графена с меди на полимер методом горячего прессования. Определить роль диффузии остаточных газовых пузырей через полимер при спекании полимера с графеном.

Научная новизна:

Развита методика APCVD синтеза, позволяющая получать сплошные и островковые пленки однослойного и многослойного графена на медной подложке.

Впервые экспериментально показано, что при отжиге медной фольги (Alfa Aesar 13382) толщиной 25 мкм происходит формирование кристаллических зерен с преимущественной

ориентацией (001) к поверхности при размерах 50-200 мкм, и с ориентацией (111) при размере более 1000 мкм.

Экспериментально показано изменение формы графеновых кристаллов в зависимости от соотношения расходов газов $\mathrm{CH_4}$ к $\mathrm{H_2}$ в смеси синтеза.

Впервые экспериментально показано, что основными факторами, приводящими к повреждению графеновых пленок и увеличению их сопротивления при переносе методом горячего прессования на полимер ПЭТ/ЭВА с механическим разделением, являются: температурное напряжение системы «полимер — графеновый слой», формирование газовых пузырей на интерфейсе «графен — термополимер», деформация образцов при разделении.

Экспериментально показано, что при механическом разделении существенную роль играет ориентация зерен медной подложки, на которой сформирован графен.

Теоретическая и практическая значимость

В результате проделанной работы определены оптимальные параметры термического синтеза однослойных и многослойных графеновых структур (температура синтеза, расход метана, расход водорода). Определены основные теплофизические механизмы (термическое расширение системы медь/графен/полимер, диффузия остаточного газа через полимер), приводящие к повреждению графеновых пленок и влияющие на изменение их сопротивления, при переносе на полимер методом горячего прессования. Проведенные исследования позволяют получать графен-полимерные композиты с сопротивлением от 1,5 до 8 кОм/квадрат. Данные композиты могут быть использованы в качестве гибких и прозрачных электродов и нагревателей, чувствительных элементов в различных сенсорах, а также в качестве термоакустических элементов.

Основные положения, выносимые на защиту

Результаты исследования влияния температуры синтеза и концентрации газов на структуру формирующихся графеновых пленок.

При отжиге медной фольги толщиной 25 мкм основным состоянием зерен с размерами 50-200 мкм является кристаллическая ориентация (001) относительно поверхности, а для зерен с размерами более 1000 мкм - ориентация (111).

Предложен способ определения скорости роста и зародышеобразования графеновых кристаллов на основе модели Джонсона - Мела - Аврами – Колмогорова.

Определены факторы, приводящие к повреждению графеновой пленки при переносе с меди на полимер методом горячего прессования.

Достоверность полученных результатов обеспечивается использованием современных апробированных методов измерений, проведением калибровочных измерений, анализом погрешностей и воспроизводимостью полученных экспериментальных результатов.

Личный вклад состоял в подготовке и проведении всех представленных в диссертации экспериментов, обработке, анализе и интерпретации результатов. Теоретический анализ, подготовка статей для публикаций в рецензируемых журналах, докладов на конференциях были проведены в составе научного коллектива с непосредственным участием автора.

Апробация работы. Основные результаты диссертации докладывались и обсуждались на следующих конференциях: Графен: молекула и 2D-кристалл. 8-12 сентября 2015. г. Новосибирск; Advanced Carbon Nanostructures. June 29 - July 03, 2015. St. Petersburg, Всероссийская конференция молодых Материаловедение, технологии и экология в третьем тысячелетии. 11-13 мая 2016 г., Томск, Россия; Russia-Japan conference "Advanced Materials: Synthesis, Processing and Properties of Nanostructures – 2016" October 30 – November 3, 2016 Novosibirsk, Russia; XIV Всероссийская школа конференция молодых ученых с международным участием «Актуальные вопросы теплофизики физической И гидрогазодинамики», 22 - 25 ноября 2016 года, Новосибирск, Россия; International Conference Advanced Carbon NanoStructures (ACNS'2017), July 3-7, 2017, - St. Petersburg, Russia; Вторая Российская конференция «Графен: молекула и 2D-кристалл», 7-11 августа 2017 г.; XI Всероссийская научная конференция молодых ученых «НАУКА. ТЕХНОЛОГИИ. ИННОВАЦИИ» 4-8 декабря 2017 г., г. Новосибирск; Российская конференция и школа молодых ученых по актуальным спектроскопии комбинационного рассеяния "Комбинационное рассеяние – 90 лет исследований" 28 мая - 1 июня Новосибирск; Всероссийская конференция Сибирский теплофизический семинар посвященный 85-летию академика А.К. Реброва», 27-30 августа 2018 г. Новосибирск; XV школа-конференция Всероссийская молодых ученых участием АКТУАЛЬНЫЕ ВОПРОСЫ международным ТЕПЛОФИЗИКИ И ФИЗИЧЕСКОЙ ГИДРОГАЗОДИНАМИКИ " 20-23 ноября 2018 г., г. Новосибирск; ІІІ Всероссийская научная конференция с элементами школы молодых учёных "ТЕПЛОФИЗИКА

и ФИЗИЧЕСКАЯ ГИДРОДИНАМИКА". Ялта, 10-16 сентября 2018 г.; 14th International Conference "Advanced Carbon Nanostructures" Saint-Petersburg, 1-5. (ACNS'2019) July 2019: Всероссийская конференция «XXXV Сибирский теплофизический семинар» 27-29 августа 2019 г. Новосибирск, Россия; IV Всероссийская конференции «Теплофизика и физическая гидродинамика» 15-22 сентября 2019 г., г. Ялта, Республика Крым.; ІІ Международная конференция молодых ученых, работающих в области углеродных материалов, 29 - 31 мая 2019 года, Москва, Троицк; Третья Российская конференция «Графен: молекула и 2D-кристалл» 5-9 августа 2019 года, Новосибирск.

Публикации.

Основные научные результаты работы изложены в 9 статьях, опубликованных в ведущих рецензируемых научных журналах и изданиях, рекомендованных ВАК.

Объем и структура работы.

Диссертация состоит из введения, пяти глав и заключения. Полный объем диссертации составляет 138 страниц с 49 рисунками. Список цитируемой литературы содержит 146 наименований.

Работа выполнена при поддержке Министерства образования и науки РФ в рамках ФЦП (Уникальный идентификатор соглашения RFMEFI60417X0157, номер соглашения 14.604.21.0157)

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы работы, сформулированы цель и задачи исследований, определена научная новизна работы и представлены основные положения, выносимые на защиту.

Первая глава посвящена обзору литературы по темам синтеза графена различными методами и методам переноса графена на полимеры. В разделе 1.1 описаны свойства графена и перспективы его применения. В разделе 1.2 описаны различные методы получения графена. В разделе 1.3 рассмотрены, представленные в литературе, особенности СVD синтеза графена, описана кинетика роста графеновых структур и механизм реакции. Несмотря на широкую апробацию в научной литературе, исследование методов термического СVD синтеза остается актуальной задачей. Особенностью данных методов является высокая чувствительность к параметрам, что позволяет с одной стороны управлять процессами синтеза, с другой приводит к трудности сопоставления результатов, полученных различными авторами. В настоящий момент основное внимание исследователей направлено на контроль количества слоев и

увеличение размера 2D-кристаллов графеновой плоскости. В разделе 1.4 описано влияние структуры подложки на CVD синтез графена. В особенности кристаллографической рассмотрены 1.5 структуры меди. Раздел 1.6 посвящен обзору методов переноса графена на полимерные подложки. В современной литературе для переноса на непроводящую подложку графен, выращенный на металлической подложке, покрывают полимерной пленкой, затем металлическую подложку удаляют. Чаще всего металлическую стравливают кислотах. Однако, ДЛЯ развития промышленных технологий производства необходимо сохранять подложку для повторного использования, так как она составляет основную стоимость в производстве. Для этой цели необходимо развивать методы механического переноса графена.

Во второй главе представлена экспериментальная установка для синтеза графена методом APCVD и методы исследования полученных образцов. Установка для CVD синтеза (рис. 1a) представляла собой печь, в которую помещалась кварцевая трубка. Эта трубка служила камерой для синтеза. В нее помещалась медная подложка толщиной мкм. Синтез происходил при атмосферном давлении. экспериментах использовались газы высокой чистоты: Аг – буферный, CH_4 – углеродный прекурсор, H_2 – газ сокатализатор. Стадии синтеза разделялись следующим образом (рис. 16): 1) нагрев установки; 2) медной подложки, в процессе которого с стравливался оксидный слой и происходил рост медных зерен; 3) смена газовой смеси; 4) далее в камеру подавалась смесь газов для синтеза, происходило образование зародышей графена, последующий рост и объединение в сплошную пленку; 5) синтез завершался быстрым охлаждением.

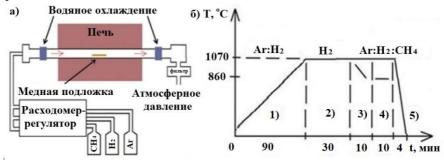


Рис. 2. a) схематичное изображение установки для термического CVD синтеза; б) температурные режимы, использованные во время синтеза.

На основании литературного обзора методов анализа графена с использованием стандартных способов обработок изображений разработана методика, позволяющая исследовать кристаллическую структуру медной подложки, определить качество графеновых покрытий и степень его переноса на термополимер. В разделе 2.2 описан способ анализа образцов графена методом спектроскопии комбинационного рассеяния света (КРС). В разделе 2.3 описан метод оптической характеризации графена с окислением подложки. В разделе 2.4 представлен способ статистической обработки данных, полученных методом дифракции отражённых электронов (ДОЭ), для анализа структуры медной подложки. В разделе 2.5 описаны методики переноса графена с медной подложки на полимеры. В разделе 2.6 изложен метод измерения электрического сопротивления графенполимерных композитов.

В заключительной части второй главы представлен подход, использованный в данной работе для аттестации синтезированного графена. С помощью оптической микроскопии с окислением подложки определялась степень покрытия меди графеном, количество зародышей на единицу площади, форма и размер графеновых кристаллов. Методом ДОЭ снималась карта кристаллографических ориентаций зерен медной подложки. Методом спектроскопии КРС определялось количество слоев графена и степень его дефектности. Далее графен переносили на полимер. По сопротивлению графенполимерной пленки оценивалась степень повреждения графена во время переноса. С помощью оптического метода определялось наличие инородных включений в полимере. По данным КР фиксировалось наличие графена на полимере. На основании оптических исследований и исследований методом ДОЭ окисленной поверхности, оставшейся после переноса определялась степень переноса с зерен меди, имеющих различную кристаллографическую ориентацию. Данный подход оценить влияние условий синтеза на кинетику роста графена, и определить факторы, влияющие на качество переноса графена с меди на термополимер.

Третья глава посвящена экспериментальному исследованию процессов рекристаллизации меди при отжиге в условиях синтеза графена. Из литературных данных известно, что скорость роста и дефектность графена, растущего на различных кристаллографических поверхностях, различны. Таким образом, важной задачей предварительной термической обработки меди является создание поверхностей с определенной кристаллической текстурой и размером

зерен. Например, в недавних работах показано, что при термической обработке медной фольги при температуре 1030-1040°C возможно формирование монокристаллической структуры с ориентацией (111) к поверхности. В работе [J.Hu et al. // Scientific Reports (2017) 7:45358] объяснили это влиянием атмосферы отжига. Авторы предполагают, что оксидная пленка стабилизировала энергетически менее выгодную грань с ориентацией (001), и при ее удалении в реализовалась ориентация (111), характеризующаяся минимальной поверхностной энергией для ГЦК решетки. В статье [X.Xu et al. // Science Bulletin (2017), 62, 1074] утверждается, что при организации градиентного прогрева (путем протягивания подложки через горячую зону реактора, с максимальной температурой 1030°C) в атмосфере аргона она приобретала ориентацию (111), несмотря на наличие оксидного слоя. Авторы объясняют это ростом исходного зерна, находящегося на острие, под действием градиента температуры. понимания процессов, Таким образом, ДЛЯ приводящих формированию монокристаллической меди, мы исследовали оба этих эффекта в идентичных условиях.

В данной работе в экспериментах использовали медную фольгу AlfaAeasar 13382 с толщиной 25 мкм. Ориентации зерен исходной медной подложки до отжига были распределены равновероятно без выделенного направления. Средний размер медных кристаллитов составлял 12 мкм. Отжиг проводился 30 мин в атмосфере Н₂ и Аг, при температурах 1030°С и 1070°С (рис. 2a). Во всех случаях при отжиге происходил рост зерен относительно исходного размера, повышение температуры отжига приводило к увеличению среднего размера зерен. Показано, что в атмосфере Н2 рост зерен происходил быстрее, чем в Аг. Кроме того зерна меди размером 50 – 200 мкм приобретали выделенную кристаллографическую ориентацию (001), по сравнению кристаллографической co случайной исходной ориентацией. приводил к росту зерен Градиентный отжиг размеров, ДО соответствующих выдержке в горячей зоне в течение времени протяжки, но эффект моноориентации, упомянутый в статье выше, не наблюдался. Увеличение времени отжига в атмосфере Н2 при температуре 1070°C до 600 мин привело к образованию зерен размерами более 1000 мкм с ориентацией (111) (рис. 26).

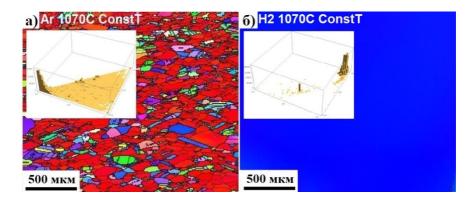


Рис. 2. ДОЭ (EBSD) карты образцов медной фольги (99.8%) после отжига при температуре 1070 $^{\circ}$ C: а) 30 мин в атмосфере Ar; б) 600 мин в атмосфере H₂.

Ориентация (111) обладает минимальной поверхностной энергией. Такое состояние является энергетически выгодным и реализовалось в нашем случае при длительном отжиге в атмосфере ориентация водорода. Из литературы известно. что стабилизируется наличием примесных внутренними атомов И дефектами в кристалле. При наличии в атмосфере отжига водорода происходило восстановление оксидного слоя. Однако, водорода связано с удалением кислорода не только с поверхности, но и из объема меди. Эффект известный в металлургии как «водородное охрупчивание» – водород, проникая в металл, восстанавливает кислород до паров воды, которые создают высокое давление и уходят из меди в газовую фазу.

Отжиг приводит к диффузии примесей и дефектов к границам зерен. Для оценки характерных времен диффузии (t) на масштаб толщины фольги (L=25[мкм]) использовали формулу: $t=\frac{L^2}{2D}$, где D - коэффициенты диффузии, значение которых взяты из работ [Landolt-Börnstein // Group III Condensed Matter (1990) 26; Butrymowicz D.B. et al. // J. Phys. Chem. Ref. Data. (1973) 2, 3, 643]. Оценка показала, что время диффузии при температуре 1070°C для кислорода $(D_{Cu-O}=3*10^{-5}\left[\frac{\text{см}^2}{\text{сек}}\right],\ t_{Cu-O}=10^{-1}[\text{сек}])$ и водорода $(D_{Cu-H}=3*10^{-4}\left[\frac{\text{см}^2}{\text{сек}}\right],\ t_{Cu-H}=10^{-2}[\text{сек}])$. Это много меньше времени роста зерен меди, которые мы получили. То есть диффузия кислорода и водорода не является лимитирующим фактором. Время диффузии дефектов

 $(D_{Cu-Cu}=4*10^{-9}\left[\frac{\text{см}^2}{\text{сек}}\right]$, $t_{Cu-Cu}=13$ [мин]) на характерный масштаб толщины составило порядка десяти минут, что согласуется с временем роста зерен в наших экспериментах. Соответственно, этот процесс являлся лимитирующим в нашем случае.

В заключении сформулированы основные результаты по третьей главе. Показано, что путем предварительной термической обработки поликристаллической структуры добиться ориентированных направлениях либо В близких К (100).монокристаллической пленки с ориентацией (111). Показано, что скорость роста зерен зависит от температуры и состава атмосферы. При этом отжиг медной фольги с созданием температурного градиента вдоль поверхности меди не влияет на формирование единой кристаллической ориентации зерен отношению меди по поверхности. Показано, что лимитирующим фактором для роста зерен медной подложки является диффузия внутренних дефектов границам зерен и поверхности.

Четвертая глава посвящена экспериментальному исследованию условий термического CVD синтеза, влияющих на формирование графена на медной подложке. Согласно модели термического CVD синтеза, представленной в литературе, метан адсорбируясь на поверхности меди, под действием высокой температуры, разлагается углеводородные радикалы, рекомбинирует встраивается в графеновую плоскость. Таким образом, для синтеза основными параметрами являются температура, потоки метана и водорода к поверхности подложки, которые определяют скорости десорбции, реакции разложения углеводородов поверхности меди и процессы диффузии. Стратегия исследования в последовательном изучении параметров синтеза заключалась температура, концентрация (концентрация метана, водорода). Показатели, по которым оценивались графеновые покрытия — это количество слоёв, степень дефектности и степень покрытия поверхности. Экспериментально исследовано влияние параметров (температура, состав смеси) и получена карта режимов синтеза однослойного и несколькослойного графена.

В разделе 4.1 представлены результаты исследования влияния концентрации метана, температуры и концентрации водорода на синтез графена. Эксперименты проводились в диапазоне температур 860-1070°С, концентрация метана изменялась 0,02-2 %, концентрация водорода менялась от 2 до 45%. Показано, что концентрация метана главным образом влияет на степень покрытия образцов. Температура

определяет количество графеновых слоев и степень дефектности графеновых плоскостей. Показано, что изменение концентрации водорода немонотонно влияет на степень покрытия подложки графеном (рис. 3).

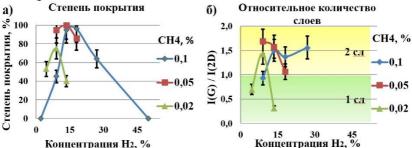


Рис. 3. Параметры графеновых покрытий, полученных при температуре 1070° С, при различных концентрациях CH_4 и H_2 в смеси синтеза.

Для смесей с различными соотношениями СН₄ к Н₂, существует некоторая концентрация водорода, при которой графеновые 2Dприобретая кристаллы меняют свою форму, симметричную гексагональную огранку (рис. 4). В расчетной статье [Pai Li. et. al. J. Phys. Chem. C (2017), 121, 46, 25949] показано, что во время роста края графеновых 2D-кристаллов могут взаимодействовать с атомами водорода, сорбированными из газовой фазы или с поверхностью меди. Таким образом, мы предполагаем, что в нашем случае при низкой концентрации водорода атомы граничные кристаллов взаимодействовали с атомами медной подложки, что приводило к сетчатой структуре кристаллов, определяемой дефектами меди. При высоких концентрациях водорода граничные атомы графеновых кристаллов пассивировались водородом и структура определялась графитовой симметрией и в меньшей степени зависела от структуры меди.

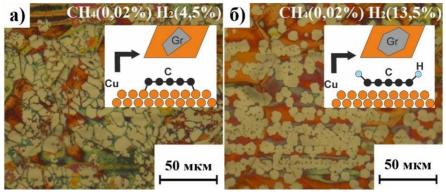


Рис. 4. Оптические снимки поверхности медной подложки, окисленной на воздухе после синтеза графена. (светло-желтые области соответствуют не окислённой меди, покрытой графеном). Образцы, синтезированные с концентрацией CH_4 - 0,02% от общего расхода газа: а) H_2 - 4,5%; б) H_2 - 13,5%.

В разделе 4.2 определена энергия активации роста графена. Наиболее часто в литературе применяется кинетическая модель в которой предполагается, что скорость роста покрытия ($V_{\text{покрытия}}$) пропорциональна доли поверхности меди непокрытой графеном: $V_{
m nokpытия}=rac{dar{S}}{dt}=lpha(1-ar{S}),$ где $ar{S}$ – степень покрытия меди графеном, lpha- константа зависящая от температуры синтеза. Интегрируя это уравнение, получаем: $\bar{S}(t)=1-\exp[-\alpha t]$, отсюда: $\alpha=-\frac{\ln(1-\bar{S})}{t}$. Для определения энергии активации (E_a) роста графена предлагается использовать уравнение Аррениуса в виде: $a(T) \sim \exp\left[\frac{-E_a}{kT}\right]$, где k – постоянная Больцмана, T - температура синтеза. Сопоставляя эти уравнения получаем: $\exp[\frac{-E_a}{kT}] = A\frac{\ln(1-\bar{S})}{t}$, где A - некая константа. Приводим к виду: $-\ln(\ln(1-\bar{S})) = \frac{1}{kT}E_a + \ln\left(\frac{A}{t}\right)$, используя данное уравнение и полученную нами зависимость степени покрытия меди графеном от температуры синтеза при постоянном времени, по наклону кривой была определена энергия активации роста графена E_a для наших условий (рис. 5), которая составила 1,17 эВ. Данное значение согласуется с результатами экспериментальных работ других авторов 2,7 эВ [S. Xing et al. // Ch. Physics Letters (2013) 580, 62], 1,5 эВ [L. Colombo et al. // ECS Trans. (2010) 28, 109], и теоретическими расчетами 1-3 эВ [Kim H. et al. // ACS Nano. (2012) 6, 4, 3614-3623].

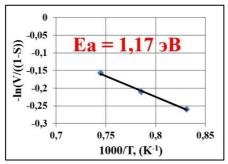


Рис. 5. Энергия активации роста графена.

В разделе 4.3 предложен способ описания кинетики роста графеновых кристаллов с помощью модели Джонсона - Мела -Аврами – Колмогорова. В литературе применяется кинетическая предположении, скорость модель что роста пропорциональна доли поверхности меди непокрытой графеном, на которой происходит разложение метана, описанная в разделе 4.2. В такой постановке первоначально скорость роста покрытия является самой высокой, а затем уменьшается по мере роста графена. Однако, такой подход не описывает увеличение скорости роста в начальный момент времени за счет интенсивного образования зародышей. В литературе [Kim H. et al. // ACS Nano. (2012) 6, 4, 3614-3623] это стадий: противоречие снимается выделением двух активного зародышеобразования и стадии роста кристаллов. Для расчета частоты нуклеации и скорости роста отдельных графеновых кристаллов мы Аврами-Колмогорова, использовать предложили уравнение приведенное к двумерному виду, которое позволило связать скорость роста графенового покрытия со скоростью роста индивидуальных зародышей и частотой зародышеобразования и описать данный процесс, не разделяя на стадии. В оригинальном виде уравнение Аврами-Колмогорова описывает процесс фазового перехода в объёме, заключающийся в образовании и росте кристаллов, используя набор предположений: скорость роста кристаллов и вероятность появления нового зародыша в единице ещё не закристаллизованного объёма в единицу времени (интенсивность зародышеобразования) зависит только от времени; все кристаллы имеют одинаковую выпуклую форму; кристаллизующийся объём много больше объёма одного кристалла и постулируется пуассоновский закон нуклеации. Для роста графеновых кристаллов на поверхности в качестве интенсивности образования нового зародыша в единице объёма мы использовали интенсивность образования нового зародыша на единице площади, а в

объёма растущего кристалла использовали графенового кристалла. В нашем случае выполнение условий данной модели связано с потоком материала из газовой фазы на поверхность и выглядит следующим образом: в предположении постоянной скорость концентрации углерода на поверхности роста графеновых кристаллов (скорость движения границы) можно считать постоянной; ввиду высокой подвижности и большого количества атомов углерода на поверхности меди процесс нуклеации можно считать пуассоновским; в предположении постоянной концентрации поверхности интенсивность углерода на зарождения новых графеновых кристаллов на единицу открытой поверхности меди (частота зародышеобразования - /) является постоянной; кристаллы графена имеют одинаковую выпуклую форму, приближенную к круглой; площадь подложки значительно превышает площадь одного графенового кристалла. В общем случае для задачи о зарастании подложки двумерными кристаллами формула Колмогорова для покрытия \bar{S} будет иметь следующий вид:

$$\bar{S}(t) = 1 - \exp\left[-\int_0^t J(t')S(R(t',t)) dt'\right],$$

где J(t') — интенсивность образования нового зародыша на единице не покрытой графеновыми кристаллами площади в момент времени t', S(R) — площадь кристалла размера R, R(t',t) — размер кристалла, зародившегося в момент времени t', к моменту времени t. В оговоренных выше условиях формула приобретает следующий вид:

$$\bar{S}(t) = 1 - \exp\left[-\int_0^t J \,\pi v^2 \,(t - t')^2 dt'\right] = 1 - \exp\left[-\frac{\pi}{3}Jv^2 \,t^3\right].$$

При этом эволюция количества зародышей на единицу площади (\overline{N}) описывается следующим выражением:

$$\overline{N}(t) = \int_0^t Jexp\left[-\frac{\pi}{3}Jv^2{t'}^3\right]dt'$$

Измерив степень покрытия $\bar{S}(t_1)$ и плотности зародышей $\bar{N}(t_1)$ в определенный момент времени t_I , по оптическим снимкам, решая обратную задачу, легко определить скорости роста 2D кристаллов (v) и интенсивность зародышеобразования (J):

$$v = \sqrt{\frac{-ln(1 - \bar{S}(t_1))}{\frac{\pi}{3}t_1^3 J}} \qquad J = \frac{\bar{N}(t_1)}{t_1} \frac{1}{\int_0^1 exp(ln(1 - \bar{S}(t_1))\tau^3)d\tau}$$

Полученные значения в наших экспериментах (для условий синтеза $Ar(81\%) + H_2(18\%) + CH_4(0,2\%)$, $T=1070^{\circ}C$) составили: V=2,2-3 [мкм/мин], J=0,021-0,023 [мкм- 2 мин- 1]. Они близки к значениям,

полученным другими авторами при исследовании скоростей роста единичных графеновых кристаллов: V = 0,16-2 [мкм/мин] [J.Kraus et al. // Ann. Phys. (2017), 529, 1700029]; V = 2,6-3,5 [мкм/мин], J = 0,012 [мкм- 2 мин $^{-1}$] [X.Gao et al. // Nanoscale Adv. (2019), 1, 1130–1135].

Основные результаты приведены в заключении по четвертой главе. Исследовано влияние концентрации метана, водорода и температуры синтеза на площадь покрытия и качество графена формирующегося при осаждении газовой ИЗ фазы Определены оптимальные однослойных параметры роста многослойных графеновых структур. Показано, что при малых концентрациях водорода изменяется форма графеновых кристаллов. Предположено, что изменение формы графеновых 2Dкристаллов связано с пассивированием краев атомами медной подложки при малых концентрациях водорода. Определены условия роста однослойного и несколькослойного графенового покрытия со степенью покрытия 100%. По экспериментальным данным определена энергия активации роста графена. Определены скорости роста и интенсивности зародышеобразования графеновых 2D-кристаллов с помощью модели Джонсона - Мела - Аврами - Колмогорова, приведенной к двумерному виду.

Пятая глава посвящена исследованию механизмов, приводящих к изменению электрического сопротивления графеновых плоскостей при переносе с медной подложки на термополимер. Для этого были синтезированы образцы однослойного и несколькослойного графена (рис. 6а) со сплошным покрытием. Эталоном, с которым сравнивались образцов, перенесенных термополимер свойства на полиэтилентерефталат/этиленвинилацетат (ПЭТ/ЭВА) горячего прессования, были образцы, полученные популярным в литературе способом - перенос методом спинкоутинга на полимер полиметилметакрилата (ПММА) последующим c травлением медной подложки. Композит ПЭТ/ЭВА – это лист для ламинирования, состоящий из двух полимеров: ПЭТ – несущий слой, ЭВА – термоклей. Был проведен анализ термических свойств ЭВА методом дифференциальной сканирующей калориметрии (ДСК) (рис. 6б). Показано, что при температуре 106°С происходит плавление ЭВА, при 98°C - затвердевание. Справочная температура плавления для ПЭТ 250°С. Полимер ПЭТ/ЭВА спекали с медной подложкой, покрытой графеном в течение 10 мин. Далее полимер с графеном механически отщепляли от меди. Сопротивление пленок, полученных таким способом, различалось в разы. Это происходило из-за неконтролируемой деформации графен-полимерного композита. Было предложено стабилизировать полимер и медную подложку с помощью двустороннего скотча на твердые пластины (Гр/ПЭТ/ЭВА-мех.стаб). Это позволило минимизировать радиус изгиба полимера при разделении, что существенно повысило повторяемость результатов. В третьем случае медь стравливали в растворе азотной кислоты (Гр/ПЭТ/ЭВА-хим.).

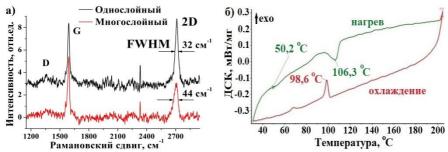


Рис. 6. a) КР спектры образцов однослойного и многослойного графена; б) ДСК диаграмма ПЭТ/ЭВА полимера.

На рис. 7а представлен график зависимости сопротивления графен-полимерных пленок от температуры спекания с ПЭТ/ЭВА для случая с химическим травлением меди. С увеличением температуры спекания сопротивление пленок уменьшалось. На оптических снимках поверхности полимера после спекания при низких температурах были обнаружены пузырьки воздуха (рис. 8а). Области неперенесённого графена таких же очертаний замечены на медной подложке, оставшейся после механического отщепления (рис. 8б). Наличие газового пузыря на границе раздела между полимером и графеном приводит к отсутствию контакта между ними. Таким образом, после удаления медной подложки на графен-полимерной пленке образуются дефекты в виде выколотых областей. При повышении температуры газопроницаемость эластичность полимеров увеличиваются, И остаточный газ диффундирует через полимер и вдоль образца к границам. Это приводит к уменьшению сопротивления образцов в 4 раза. Но даже при высоких температурах спекания сопротивление было в 1,5 раза выше эталонного образца, что связано с повреждением графенового слоя за счет линейных напряжений при нагреве и возникающих из-за различия коэффициентов термического расширения материалов. Коэффициент теплового расширения (α) ЭВА и меди различаются на порядок: α_{ЭВА}

= $180*10^{\text{-6}}$ °C⁻¹ и $\alpha_{\text{мель}} = 16.6*10^{\text{-6}}$ °C⁻¹. Для графитовой плоскости он отрицателен вплоть до достижения температуры 427° C и равен $\alpha_{rp} = 1.2*10^{-6}$ °C⁻¹. Перед спеканием графен находится на медной подложке. Нагрев выше 106°C приводит к расширению меди вместе с графеном. Затем происходит плавление термоклея ЭВА и жидкий слой ЭВА распределяется по поверхности графена. При дальнейшем нагреве от 110 до 190°С между жидким слоем ЭВА и графеновым покрытием не должно возникать механических напряжений за счет термических расширений. Однако, при остывании ниже 98°C происходит затвердевание и последующее термическое сжатие полимера. Ниже этой температуры адгезия графена к полимеру выше чем к меди, поэтому графен сжимается вместе с полимером. Чтобы определить относительное расширение-сжатие материалов, формулу линейного теплового расширения $dL = \alpha * L * dT$ приведем к виду $(dL_{3BA}-dL_{Mедь})/L*100\% = (\alpha_{3BA}*dT_1- \alpha_{Mедь}*dT_2)*100\%$, где $dL_{Mедь}$ – расширение меди вместе с графеном, а $dL_{\rm 2RA}$ – сжатие полимера вместе с графеном. Соответственно, нагрев до температуры 106°C и остывание до комнатной температуры (20°C), приводят к уплотнению графена на 1,4% при спекании с ЭВА. Таким образом, термические материалов неизбежно приводят деформации повреждению графеновой пленки и увеличению её сопротивления.

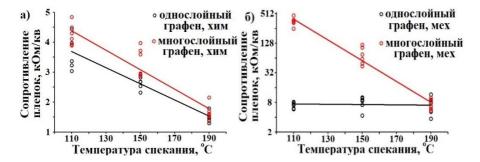


Рис. 7. Зависимости сопротивления графен-полимерных образцов от температуры спекания для однослойного и многослойного графена: а) с химическим травлением медной подложки (Γ р/ Π ЭТ/ЭВА-хим.); б) с механическим отщеплением медной подложки (Γ р/ Π ЭТ/ЭВА-мех.стаб.).

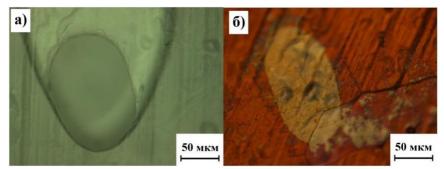


Рис. 8. Оптические снимки, полученные после снятия однослойного графена методом $\Gamma p/\Pi \exists T/\exists BA$ -мех.стаб. при температуре спекания $110^{\circ}C$: а) газовый пузырь на поверхности полимера; б) пятно контакта газового пузыря на медной подложке.

Следующий фактор – это повреждения при механическом разделении. Для однослойного графена механическое отщепление приводило меди к увеличению сопротивления графеновой пленки в 8 раз (рис. 76). Для многослойного графена этот эффект проявлялся заметно сильнее при температурах спекания 110°C и 150°C. Это связано с тем, что сопротивление графеновой пленки определяет первый сплошной слой, а последующие слои в нашем случае не имеют полного покрытия и слабо влияют на сопротивление. Однако, при переносе верхние слои уменьшают площадь контакта и адгезию клея с нижним слоем, что приводило к тому, что нижний слой переносился частично, и мы видели остатки графена на медной поверхности. При повышении температуры спекания образцов текучесть полимера увеличивается и полимер лучше заполняет неоднородности рельефа. За счет этого увеличивается площадь контакта графена и полимера, соответственно адгезия между ними улучшается. Поэтому использование многослойного графена в нашем случае приводило к увеличению сопротивления графеновых покрытий.

В разделе 5.1 проведен экспериментальный анализ сил взаимодействия графена с зернами каталитической медной подложки, имеющими различную кристаллографическую ориентацию. Зависимости кинетики роста графена, его дефектности и структуры от материала подложки, ориентации кристаллитов, их строения и прочего широко освещены в научной литературе. Еще одним крайне важным параметром является адгезия графена к подложке. Однако вопрос о влиянии ориентации кристаллитов на силу взаимодействия

между подложкой и графеном до сих пор остается открытым. В данной работе был проведен анализ площади графена, оставшегося на зернах меди с разной кристаллографической ориентацией, после процедуры переноса на полимер (таблица 1). Было замечено, что для кристаллографическим меди, близким основным зерен К направлениям (001, 607, 557), процент оставшегося графена выше, чем для зерен с промежуточными направлениями (209, 438). Анализ поверхности меди при помощи атомно-силового микроскопа показал, промежуточными кристаллическими поверхность зерен с ориентациями состоит из ступеней. Известно, что при температурах, близких к температуре плавления меди, на поверхности образуется псевдожидкий слой, который сглаживает поверхность. Синтез графена происходит на этом слое. При остывании зерна с промежуточными приобретают ступенчатый рельеф, ориентациями отслаивается из-за ограничения по радиусу изгиба. Следовательно, кристаллизации поверхности меди во время охлаждения уменьшается площадь контакта на неосновных гранях. графен, выращенный промежуточной на зернах кристаллографической ориентацией, существенно проще перенести на полимер механическим методом.

Таблица 1. Процент площади, занимаемой графеном, оставшемся на медной подложке после переноса на полимер.

Индексы Миллера зерен медной подложки	Процент площади оставшегося графена, %
607	1,76
001	1,51
557	0,93
209	0,34
438	0,03

В заключении изложены основные результаты по пятой главе. Представлено экспериментальное исследование влияния условий переноса на электрическое сопротивление графен-полимерных композитов. Проведено проводимости сравнение полимерполученных различными графеновых пленок, методами использованием ПММА и ПЭТ/ЭВА. Показано, что основными механизмами повреждения графеновых пленок при переносе на термополимер с механическим разделением являются: термическое расширение и сжатие системы «полимер-графеновый слой», которое приводит к возрастанию сопротивления в 1,5 раза; формирование пузырей на интерфейсе «графен – термополимер», увеличивает сопротивление до 4 раз; деформация образцов при разделении приводит к увеличению сопротивления графеновой пленки в 8 и более раз. Предложена процедура стабилизации подложек при механическом отделении меди, которая позволяет снизить повреждения графеновой пленки. Проведена оптимизация процесса переноса по температуре запекания для полимера ПЭТ/ЭВА. Предложена методология анализа адгезии графена к меди при механическом переносе графена на термополимер. Представлено экспериментальное исследование силы взаимодействия CVD графена, синтезированного на медной подложке из метана, с зернами меди, имеющими различную кристаллическую ориентацию относительно Показано, что сила взаимодействия поверхности. графена поверхностью меди увеличивается с приближением к ориентациям, соответствующим основным кристаллографическим направлениям.

В заключении диссертации сформулированы основные результаты и выводы работы:

- 1. Развита методика APCVD синтеза графена на медной подложке с использованием метана, аргона и водорода, позволяющая получать сплошные и островковые графеновые пленки с различными степенью покрытия, степенью дефектности I(D)/I(G)=0.01-0.33 и количеством слоев. Экспериментально показано, что в зависимости от соотношения расходов газов метана и водорода в смеси синтеза графеновые 2D-кристаллы меняют свою форму с произвольной на симметричную гексагональную.
- 2. Для оптимальных условий синтеза определены термодинамические параметры. С помощью модели Джонсона Мела Аврами Колмогорова, приведенной к двумерному виду определены скорости роста (v = 2,22-3,03 мкм/мин) и интенсивности зародышеобразования (J = 0,021 0,023 мкм $^{-2}$ мин $^{-1}$) графеновых 2D-кристаллов. По полученным экспериментальным данным определена энергия активации роста графена (1,17 эВ).
- 3. В результате исследования эволюции текстуры поверхности медной фольги Alfa Aesar 13382 в процессе её термической обработки в атмосфере водорода при температурах, близких к точке плавления меди, обнаружено, что в течение 30 мин отжига исходно произвольно ориентированные зерна меди со средним размером 12 мкм

увеличиваются до размеров 150 - 250 мкм и приобретают выделенную ориентацию (001) к поверхности. Дальнейший отжиг приводит к росту зерен до размеров порядка миллиметра с доминирующей ориентацией (111). На начальном этапе отжига скорость роста зерен составила порядка 3 мкм/мин, что по оценкам соответствует скорости самодифузии меди в данных условиях.

факторами, Основными приводящими К повреждению графеновых пленок и увеличению их сопротивления при переносе методом горячего прессования на полимер ПЭТ/ЭВА с механическим разделением, являются: температурное напряжение системы «полимер – графеновый слой» ($\Delta R/R \sim 0.5$); формирование газовых пузырей на интерфейсе «графен – термополимер» ($\Delta R/R \sim 3$); деформация образцов при разделении ($\Delta R/R > 7$). Степень переноса графена с поверхности меди зерен, соответствующих для кристаллографическим направлениям, меньше, чем для зерен с промежуточными ориентациями.

Материалы диссертации достаточно полно опубликованы в следующих работах:

- 1. Smovzh D.V., Kostogrud I.A., Sakhapov S.Z., Zaikovskii A.V., Novopashin S.A. The synthesis of few-layered graphene by the arc discharge sputtering of a Si-C electrode // Carbon, Volume 112, Pages 97-102 (2017). (из перечня ВАК).
- 2. Kostogrud I.A., Trusov K.V., Smovzh D.V. Influence of Gas Mixture and Temperature on AP-CVD Synthesis of Graphene on Copper Foil // Advanced Materials Interfaces. Vol. 3, Issue 8, P.1500823 (1-6) (2016). (из перечня ВАК).
- 3. Kostogrud I.A., Boyko E.V., Smovzh D.V. CVD Graphene Transfer from Copper Substrate to Polymer // Materials Today: Proceedings, Volume 4, Issue 11, Part 1, Pages 11325-11504 (2017). (из перечня ВАК).
- 4. Kostogrud I.A., Boyko E.V., Smovzh D.V. The main sources of graphene damage at transfer from copper to PET/EVA polymer // Materials Chemistry and Physics, 219, 67-73 (2018). (из перечня BAK).
- 5. Boyko E.V., Kostogrud I.A., Bezrukov I.A., Krivenko A.S., Smovzh D.V. The influence of the crystallographic orientation of the copper catalytic substrate crystallites on the mechanical transfer of graphene // Mater. Res. Express, 6, 125628 (2019). (из перечня ВАК).
- 6. Smovzh D.V., Boyko E.V., Kostogrud I.A. Modification of crystal structure of copper surface during graphene synthesis // Journal of Physics: Conference Series, 1128(1), 012109 (2018). (из перечня ВАК).

- 7. Kostogrud I.A., Boyko E.V., Smovzh D.V. Formation of graphene on the surface of copper under the conditions of chemical deposition from the gas phase // Journal of Physics: Conference Series, 1105(1), 012139 (2018). (из перечня ВАК).
- 8. Kostogrud I.A., Boyko E.V. The effect of grains crystallographic orientations of copper substrate on graphene growth // Journal of Physics: Conference Series 1359, 012102 (2019). (из перечня ВАК).
- 9. Kostogrud I.A., Boyko E.V., Smovzh D.V. Effect of hydrogen concentration on CVD synthesis of graphene // Journal of Physics: Conference Series, 1382, 012157 (2019). (из перечня ВАК).