## ОТЗЫВ

официального оппонента на диссертацию Вожакова Ивана Сергеевича "Математическое моделирование волновых режимов течения пленок жидкости в вертикальных каналах", представленную на соискание учёной степени кандидата физико-математических наук по специальности 01.02.05 — механика жидкости, газа и плазмы

Диссертационная работа И. С. Вожакова посвящена весьма актуальной и практически важной проблеме – волновым течениям тонких плёнок жидкости. Хорошо известно применение плёнок жидкости в массообменных аппаратах: абсорберы, ректификационные колонны, парогенераторы. При этом часто режимы движения представляют собой совместные движения высокоскоростного потока газа и плёнки жидкости на стенке канала. Даже в изотермическом случае подобного рода задачи в точной постановке содержат существенные трудности с точки зрения прямого численного моделирования. Поэтому используются приближённые модели течений, которые связаны с тем или иным конкретным реальным физическим процессом. Так, например, для реакторов на быстрых нейтронах (БН), где необходимо детальное описание поведения двухфазного потока, таковые модели отсутствуют. В диссертации в этом направлении: а) проведено исследование системы уравнений в длинноволновом приближении для свободно стекающей плёнки жидкости; б) дано качественное описание вторичных волн малой амплитуды, возникающих на заднем склоне крупных первичных волн на поверхности плёнки, обдуваемой потоком газа; в) разработана модель плавления и перемещения расплава оболочки тепловыделяющих элементов (твэл) с учётом особенностей хода аварии в реакторах типа БН.

Диссертация состоит из введения, четырёх глав, заключения и списка литературы из 79 наименований. Объём работы – 103 с., включая 30 рисунков.

**Научная новизна** работы обусловлена исследованием волн на поверхности свободно стекающей изотермической плёнки жидкости и плёнки, увлекаемой газовым потоком.

- 1. Показано, что система уравнений длинноволнового приближения имеет симметрию в расширенной по поперечной координате области. Этот факт был использован для построения новой малоразмерной модели галёркинского типа и объяснения экстраполяции модели Руйер Квила, справедливой для малых расходов жидкости и умеренных чисел Рейнольдса.
- 2. Впервые построена интегральная модель свободно стекающей плёнки жидкости, учитывающей влияние: а) вязких членов во 2-ом порядке по параметру длинноволновости, б) обдуваемого плёнку газа. Расчёты по новой модели дают качественное согласие с экспериментом и проясняют природу генерации вторичных волн малой амплитуды на заднем склоне крупных первичных волн.
- 3. Разработаны и внедрены модели, позволяющие описывать плавление и перемещение оболочек твэл реакторов типа БН в начальной стадии аварии.

**Высокая степень обоснованности и достоверности результатов** диссертационной работы обусловлена выбором широко применяемой для плёночных течений модели длинноволнового приближения, её частных подмоделей; сопоставлением аналитических и численных решений, а также сравнением с экспериментальными данными.

**Научное значение** работы заключается в установлении инвариантности модельных уравнений и симметрии решений в расширенной по поперечной координате области для плёночных движений. Это позволяет вдвое сократить количество базисных функций в моделях галёркинского типа, обеспечить высокую эффективность вычислений, обосновать успешность экстраполяции модели Руйер — Квила.

**Практическое значение** диссертационной работы состоит в том, что её результаты могут быть использованы для обоснования безопасности разрабатываемых реакторов типа БН при анализе начальных этапов тяжёлых аварий.

**Краткое содержание и оценка диссертации**. Во введении обосновывается актуальность выбранной темы, формулируются цели, научная новизна, практическая значимость результатов и представлены выносимые на защиту научные положения.

Первая глава диссертации является обзорной. В ней приведён анализ исследований, близких к выбранной теме: описание аварийных режимов работы энергетических установок, современных подходов к моделированию стекающих плёнок.

Во второй главе разработаны модели, позволяющие описывать плавление и перемещение расплавленных оболочек твэл реакторов типа БН. Тестирование моделей проведено на задачах, имеющих аналитическое решение (п. 2.2), а также на результатах внереакторных экспериментов исследования плавления твэл. Отмечается, что представленная модель применима только к начальной стадии аварии, когда расплавлены только несколько твэл и можно пренебречь обратными связями с мощностью реактора.

Третья глава посвящена изучению свойств решений уравнений длинноволновой модели движения плёнки. На основе установленной инвариантности уравнений модели разработана оригинальная методика нахождения стационарных режимов стекающих плёнок, предложен метод вывода низкоразмерных систем галёркинского типа с использованием укороченного базиса из полиномов Чебышева. Численная реализация предложенных методик показывает, что полученные результаты хорошо согласуются с результатами аналитического решения линейной задачи, результатами с большим базисом полиномов (см. рис. 3.8, 3.9). Кроме того, новая модель при умеренных числах Рейнольдса (Re ~ 20) даёт хорошее согласование с расчётами с полной задачей для уравнения Орра — Зоммерфельда, в то время как результаты по модели Шкадова значительно отличаются (см. рис. 3.7). Это может приводить к неправильному перераспределению энергии по спектру и возбуждению более высоких гармоник и искажению формы волны.

В четвёртой главе рассматривается динамика нелинейных волн на плёнке жидкости, стекающей под действием силы тяжести и градиента давления с учётом воздействия газового потока. При этом влияние последнего заменяется известным полем напряжений на поверхности плёнки. Для малых чисел Рейнольдса ( $Re \sim 1$ ) получено квазилинейное уравнение (4.35) на толщину плёнки в нулевом приближении по параметру длинноволновости  $\varepsilon$ , а в первом порядке по  $\varepsilon$  — уравнение (4.45). Последнее уравнение для больших масштабов времени (нелинейная стадия эволюции плёнки) приводится к виду (4.48), содержащему информацию о влиянии газового потока посредством интегрального слагаемого. В п. 4.3 приведены две известные методики определения линейного отклика касательного и нормального напряжения газа на границе раздела. Полученные результаты по устойчивости (зависимость инкрементов возмущений от длины волны, рис. 4.2, 4.3) согласуются с выводами работ [41], [75]. Более подробно эволюция периодического возмущения

изучена в п. 4.4 при нейтральном волновом числе  $k_n=1,1$ . В начале п. 4.5 выводится интегральная модель уравнений движения плёнки (4.76), которая взаимодействует с турбулентным потоком газа. Для начального локализованного возмущения плёнки были проведены многочисленные расчёты (п. 4.5.3), см. рис. 4.10—4.15. Обнаружена генерация вторичных волн, когда первичная волна распространяется в течение длительного времени с примерно постоянной скоростью на достаточном удалении от следующей такой же волны.

В заключении кратко изложены основные результаты диссертации по главам.

Автореферат диссертации соответствует её содержанию. Основные результаты опубликованы (в соавторстве) в 6-ти работах в журналах из списка ВАК.

Недостатки по оформлению и содержанию диссертации. По оформлению диссертации имеются замечания. Во введении отсутствует описание результатов по главам. На с. 46 для операции комплексного сопряжения используется знак \* (звёздочка), а на с. 70, 81- знак  $\overline{\phantom{a}}$  (верхняя черта). На с. 90 приведена таблица, ссылка на которую отсутствует в автореферате и введении. Также имеются различные опечатки, например в уравнении (4.48). На с. 17, 21, 23, 24, 43, 44 используется безразмерный параметр  $F_i$  и лишь на с. 78 он назван плёночным числом без определения. Число Вебера обозначено как W и We. В тексте диссертации начертание безразмерных параметров различное, например, в формуле (4.46) числа Рейнольдса и Фруда написаны прямым шрифтом, а в (4.47) – курсивом. Обозначают ли они одни и те же параметры? Выражение на с. 71-72 «Возмущения, для которых мнимая часть комплексной скорости  $c_i > 0$  ( $c_i < 0$ ) неустойчивы (устойчивы) ...» является жаргоном, поскольку таковым является основное состояние, а не возмущения. В списке литературы отсутствуют ссылки на тезисы докладов диссертанта, каковых (см. с. 7) у него 11.

Замечания по содержанию диссертации.

- 1. В постановках задач (с. 13, 15, 17, 18 и далее) указывается зависимость функций только от одной переменной, хотя это не так, что затрудняет понимание текста.
- 2. Правая часть уравнения (1.77) не приведена к дивергентному виду вопреки утверждению. Постановка задачи к системе (1.77), (1.78) дана для скоростей (условия (1.79), (1.80)), а указанная система содержит три неизвестных функции, т. е. задача недоопределена. В тексте нет даже намёка на прояснение этой ситуании.
- 3. Замена (3.8) суть дискретное преобразование системы (3.2), (3.3). Какие непрерывные преобразования в смысле теории Ли Овсянникова наследует эта система из системы уравнений Навье Стокса? Преобразования типа (3.1), переводящее область движения в полосу постоянной толщины, в теории волн на воде использовалась давно, даже для трёхмерных волн над неровным дном, см. Налимов В. И., ДАН СССР, 1969, т. 189, №1, поэтому работы [36], [37] не являются первоисточниками для такой замены.
- 4. При изучении результатов 4 главы возникает вопрос: при каких условиях на спутный газовый поток возмущения на границе плёнки затухают?
  - 5. Все приведённые публикации являются совместными.

Соответствие работы требованиям, предъявляемым к диссертациям. Сделанные замечания не являются существенными. Диссертационная работа пред-

ставляет собой завершённое научное исследование, выполненное на достаточно высоком научном уровне, в которой создана новая модель плавления и перемещения расплава оболочек твэл в реакторах типа БН, разработаны методы решения задач о моделировании движения: а) свободно стекающей тонкой плёнки жидкости, б) совместного движения плёнки жидкости и турбулентного газового потока. Численная реализация новых моделей, предложенных диссертантом, сравнение результатов с результатами других авторов и экспериментальными данными убеждает в справедливости положений, выносимых на защиту.

Учитывая актуальность тематики, новизну и практическое значение полученных результатов, считаю, что диссертационная работа "Математическое моделирование волновых режимов течения пленок жидкости в вертикальных каналах" удовлетворяет всем требованиям ВАК России, предъявляемым к диссертациям на соискание учёной, а её автор Вожаков Иван Сергеевич заслуживает присуждения ему учёной степени кандидата физико-математических наук по специальности 01.02.05 – механика жидкости, газа и плазмы.

Официальный оппонент заведующий базовой кафедрой математического моделирования и процессов управления Института математики и фундаментальной информатики Сибирского федерального университета д.ф.-м.н., профессор 06.10.2017

В. К. Андреев

его отдела Л. Цев

Segue

Рабочий адрес: 660041, г. Красноярск, пр. Свободный, 79

Тел.: +7(391) 206-21-48 E-mail: andr@icm.krasn.ru