ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕПЛОМАССООБМЕНА И ТЕЧЕНИЯ В ВИХРЕВОЙ КАМЕРЕ С ЦЕНТРОБЕЖНЫМ КИПЯЩИМ СЛОЕМ Э.П Волчков, Н.А. Дворников, В.В. Лукашов, Р.Х. Абдрахманов

Kutateladze Institute of Thermophysics SB RAS, 630090, Novosibirsk, Russia

Введение

Псевдоожиженные слои находят широкое применение в тепломассообменных процессах [1]. В отличие от псевдоожижения в поле сил тяжести, в вихревых камерах с центробежным кипящим слоем зернистого материала как правило, не происходит образования газовых пузырей, может быть на порядок увеличена скорость обтекания частиц газовым потоком [2]. Применение центробежного кипящего слоя позволяет существенно повысить интенсивность тепло и массообмена. Для организации слоя частиц могут быть использованы различные типы вихревых камер. Одним из важных конструктивных факторов, определяющих характеристики течения, является угол раскрытия образующей щелевого завихрителя. В данной работе рассматривались три варианта организации потока (Рис.1.) с углом в 0, 45 и 90 градусов относительно геометрической оси камеры. Исследовался случай однофазного потока и течение в камере центробежным псевдоожиженным слое дисперсного материала, (в том числе при горении пропан-бутана).

Эксперименты в конической ВК, схематично показанной на Рис.1А, так же как и в случае камеры «В», выявили высокую стабильность центробежного псевдоожиженного слоя. При использовании частиц диаметром 1...3 мм формируется устойчивый слой, отсутствует неконтролируемый вынос и истирание зернистого материала в течение длительного времени. В цилиндрической же камере типа «Б» тех же габаритов критический вынос частиц из слоя и его разрушение происходило за 10...15 мин. В конической камере «А» был реализован процесс беспламенного окисления пропан-бутана в воздухе во вращающемся слое катализатора. Уровень NO в выходящих газах в этом случае не превышал 20 ppm.

Расчетное распределение концентрации твёрдой фазы в вихревой камере типа «В» (показано на Рис.1.-В) удовлетворительно согласуется с визуальными наблюдениями за движением частиц слоя в камере «В». Частицы слоя двигались вдоль цилиндрической поверхности камеры, под углом примерно 30-40 градусов, по отношению к торцу камеры, достигали верхней точки слоя и затем опускались к основанию слоя. Неконтролируемый вынос частиц из слоя не превышал 7% от начальной массы за время эксперимента (3 часа). В ходе экспериментов было обнаружено, что слой частиц в камере «В» остаётся устойчивым и при сокращении высоты камеры до высоты вращающегося слоя. Камера с торцевым завихрителем («В») позволяет формировать устойчивый слой с массой большей, чем в случае использования цилиндрического завихрителя («Б»).

При горении внутри камеры «Б», величина тангенциальной компоненты увеличивается, при этом положение максимума смещается к оси камеры. Уровень турбулентности при горении возрастает на периферии камеры в ~2 раза. Вблизи геометрической оси уровень пульсаций сохраняется таким же, как и в изотермическом потоке. Оказалось, что при организации горения в вихревой камере устойчивый слой дисперсной фазы формируется при более низких (в 1.5...2 раза) расходах газа по сравнению с изотермическим случаем.

Измерения распределений окружной и осевой компонент скорости проводились с помощью двух- компонентного лазерного доплеровского анемометра в потоке воздуха в сечении, расположенном над вращающимся слоем частиц. Особенности работы аппаратуры описаны в [3]. В качестве светорассеивающих центров использовались частички Al_2O_3 .

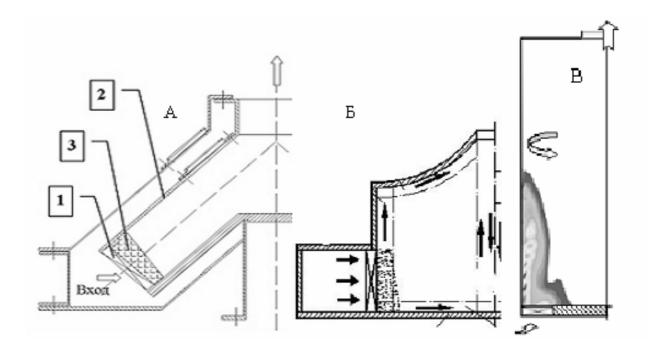
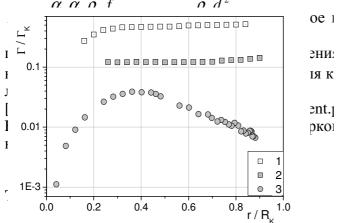


Рис.1. Рассмотренные типы вихревых камер с центробежным псевдоожиженным слоем. А- коническая ВК, R_K =174mm, d=60 mm; Б-цилиндрическая ВК с боковым щелевым завихрителем R_K =100mm, d=60 mm, L=100mm, B-цилиндрическая ВК с торцевым завихрителем, R_K =50mm, L=150 mm. 1-щелевой завихритель, 2- слой частиц, 2- корпус камеры.


Расчеты удержания зернистого слоя в вихревой камере выполнялись по Эйлеровой модели взаимопроникающих жидкостей. Уравнение неразрывности для каждой из фаз при отсутствии массобмена между фазами

$$\frac{\partial \alpha_q \rho_q}{\partial t} + \nabla \cdot (\alpha_q \rho_q \vec{v}_q) = 0$$

Уравнение количества движения

$$\frac{\partial \alpha_{q} \rho_{q} \vec{v}_{q}}{\partial t} + \nabla \cdot (\alpha_{q} \rho_{q} \vec{v}_{q} \vec{v}_{q}) = -\alpha_{q} \nabla p + \nabla \cdot \overline{\overline{\tau}}_{q} + \alpha_{q} \rho_{q} \vec{g} + \sum_{p=1}^{n} K_{pq} (\vec{v}_{p} - \vec{v}_{q})$$

Здесь $\overline{\overline{\tau}}_q$ тензор напряжений для данной фазы, K_{pq} - коэффициент обмена импульсом между р и q фазами, α_q - объемная доля q фазы в потоке. Коэффициент обмена импульсом между фазами определялся аналогично, как и в лагранжевых моделях движения твердой фазы в потоке газа.

²Рис. 2. Безразмерный момент количества движения потока в цилиндрической ВК. 1- Б, однофазное течение; 2- Б, масса частиц 50 г; 3- камера В, масса частиц 140 г,d=20 mm.

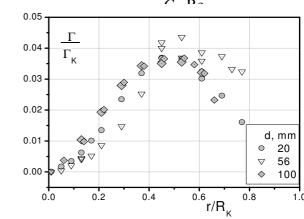


Рис.3. Распределение безразмерной циркуляции в вихревой камере B - c торцевым завихрителем. Масса частиц слоя — $100~ \Gamma$, массовый расход воздуха $24~ \Gamma/c$.

Наличие слоя частиц в вихревой камере приводит к снижению величины момента количества движения (Рис.2.). Характер распределения безразмерной циркуляции (отнесённой на его значение при $r=R_K$) в ВК с торцевым завихрителем (В) отличен от закономерностей ВК с боковым цилиндрическим завихрителем (Б). В камере с боковым цилиндрическим завихрителем момент количества движения в области $0.2 < r/R_K < 0.9$ остаётся практически постоянным. При использовании торцевого завихрителя (В) безразмерная циркуляция изменяется по радиусу с наличием максимума циркуляции в области, удаленной от боковой стенки. Возможно, это связанно с тем, что, течение в камере Б с цилиндрическим завихрителем является непроточным в радиальном направлении, т.е., основная часть потока, вошедшая в ВК, движется к оси камеры не по всей её высоте, а только через тонкие пристенные области, примыкающие к торцевым поверхностям. Изменение диаметра выходного отверстия вихревой камеры с торцевым завихрителем от d=20 mm до d=100 мм слабо меняет распределения циркуляции по радиусу (Рис.3.). Изменения, по-видимому, связаны тем, что в этом режиме, как видно из данных представленных на Рис.4., в приосевой области существует область возвратного течения.

На рис. 5. представлены радиальные профили тангенциальной скорости, газа при наличии частиц в камере «В», измеренный экспериментально с помощью ЛДИС и рассчитанный по $k - \varepsilon$ модели в сечении на расстоянии 66 мм от нижнего торца камеры. Учитывая, что дисперсная фаза на порядок снижает тангенциальную скорость газового потока, соответствие расчета и эксперимента удовлетворительное. В случае однофазного потока использовалась модифицированная $k - \varepsilon$ модель тур-

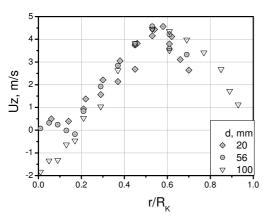


Рис.4. Распределения осевой компоненты скорости в вихревой камере «В».

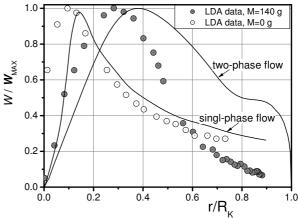


Рис.5. Тангенциальная скорость газа камера «В». d=20 mm. Линии- расчёт: k-е модель турбулентно-

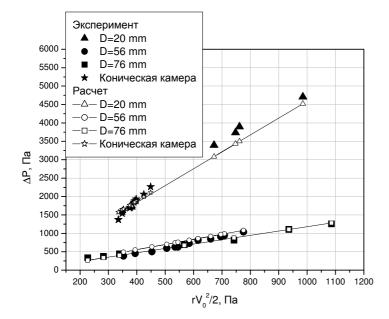


Рис.6. Сопротивление на цилиндрической камере типа «В» при различных диаметрах выхлопного отверстия и на конической камере типа «А».

булентности, учитывающая влияние массовых сил на турбулентность [4], которая позволяет получить несколько лучшее соответствие экспериментальным данным, чем стандартная модель, использованная при расчете двухфазного течения.

Гидравлическое сопротивление вихревой камеры

Важной характеристикой тепломассообменного аппарата является зависимость потерь давления от расхода газа, проходящего через него. В наших опытах потери давления

проводились путём измерения разности давления между окружающей атмосферой и избыточным давлением перед завихрителем. Результаты измерений и расчетов по формулам, полученным ниже приведены на Рис.6. Линиями нанесен расчет. Как видно из представленных данных в камерах различного типа зависимость перепада давления от $\rho V_0^2/2$ скоростного напора воздуха в щелях закручивающего аппарата имеет линейный характер.

Для оценки гидравлических потерь была рассмотрена простая модель, учитывающая факторы, влияющие на гидравлические потери. Примем, что потери давления в камере являются суммой потерь давления на завихрителе, потерь при прохождении газом зоны от боковой стенки до радиуса выхлопного отверстия и потерь внутри зоны, ограниченной радиусом выхлопного отверстия,

$$\Delta P = \Delta P_1 + \Delta P_2 + \Delta P_3 \tag{1}$$

Определим потери давления на завихрителе используя интеграл Бернулли:

$$\Delta P_1 = \frac{\rho(\alpha_2 V_0)^2}{2} \tag{2}$$

Здесь V_0 — полная средняя скорость в щелях, α_2 — коэффициент неравномерности скорости в щелях (отношение максимальной скорости в щели к среднерасходной). С учетом того, что при прохождении слоя частиц тангенциальная скорость газа падает в α_1 раз, а также принимая, что в зоне от боковой стенки до радиуса выхлопного отверстия циркуляция постоянна, изменение давления в этой зоне может быть записано в виде

$$\frac{\partial P}{\partial r} = \rho \frac{V_{\varphi}^2}{r} \tag{3}$$

где $V_{\varphi} = \alpha_1 \alpha_2 V_0 R_0 \cos \varphi / r$. Отсюда, интегрируя уравнение (3) от R_0 , до радиуса выхлопного отверстия r_0 , определим перепад давления на участке от боковой стенки до радиуса выхлопного отверстия

$$\Delta P_2 = \frac{\rho(\alpha_2 V_0)^2}{2} * (\alpha_1 \alpha_2 \cos \varphi)^2 \left[\left(\frac{R_0}{r_0} \right)^2 - 1 \right]$$
 (4)

Принимая в зоне ограниченной радиусом выхлопного отверстия вращение потока по закону твердого тела $V_{\varphi}=\omega r$, и учитывая, что на границе зоны постоянной циркуляции и зоны вращения по закону твердого тела скорость вращения не имеет разрыва, можно записать

$$\omega = \frac{\alpha_1 \alpha_2 V_0 R_0 \cos \varphi}{r_0^2}$$
, a $V_{\varphi} = \frac{\alpha_1 \alpha_2 V_0 R_0 \cos \varphi}{r_0^2} * r$

Тогда интегрируя уравнение (3) от r_0 до нуля получим

$$\Delta P_3 = \frac{\rho(\alpha_2 V_0)^2}{2} * (\alpha_1 \alpha_2 \cos \varphi)^2 \left(\frac{R_0}{r_0}\right)^2$$
 (5)

Суммируя по формуле (1) полученные составляющие потери давления, получим формулу

$$\Delta P = \frac{\rho \alpha_2^2 V_0^2}{2} \left[1 + \alpha_1^2 \cos^2 \varphi \left(2 \left(\frac{R_0}{r_0} \right)^2 - 1 \right) \right]$$
 (6)

В расчетах принималось для конической камеры $\alpha_1 = 0.38$, для цилиндрической $\alpha_1 = 0.32$, неравномерность профилей скорости в щелях в первом приближении не учитывалась, $\alpha_2 = 1$.

Выводы

Сочетание воздействия центробежных сил и сил тяжести на псевдоожиженный слой дисперсного материала в вихревой камере приводит к увеличению стабильности слоя при сохранении высокой скорости обтекания частиц в вихревых камерах с коническим и торцевым завихрителями.

Acknowledgments

The authors are very thankful for the financial support of the work by Russian President grant No HIII-6965.2006.8.

REFERENCES

- 1. Дж. Боттерил Теплообмен в псевдоожиженном слое, М.: Энергия, 1990.
- 2. Волчков Э.П., Кайданик А.Н., Терехов В.И., Ядыкин А.Н. // ТОХТ.- 1993.- 27(3).- С.258- 264.
- 3. **Титков В.И., Лукашов В.В.** Оценка параметров турбулентных течений с помощью следящего фильтра комплексной огибающей доплеровского сигнала // Optoelectronic, instrumentation and data processing. 2006. Vol.42, No. 1. P. 100-108.
- 4. **E.P. Volchkov, N.A. Dvornikov, V.P. Lebedev, V.V.Lukashov.** The investigation of vortex chamber aerodynamics. // Proceeding the third Russian Korean international symphosium on science and technology, KORUS99 June 1999, Novosibirsk, Russia, vol.1, pp.40-43.